Device for use in temporary insertion of a sensor within a...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06231514

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to placement of sensors within a patient's body, and in particular relates to facilitating repeated placement of a non-sterile sensor, such as an ultra-sound transducer, into a patient's body in a minimally invasive and sterile manner.
It is frequently desirable to obtain information regarding the size, shape, and function of internal body organs by the use of ultrasound echo imaging. For example, it is desirable to evaluate the performance of a patient's heart after cardiac surgery. In the time immediately after such surgery, patients frequently have significant cardiac functional problems, and visualization and examination of the heart by ultrasound echo imaging may be of critical value. Currently, transthoracic and transesophageal echocardiography are performed as manners of observing the heart. These are not entirely desirable, however, as the second requires sedation and presents risks of trauma to the esophagus and the images obtained by the first are of poor quality after cardiac surgery.
Fonger et al. U.S. Pat. No. 5,291,896 discloses a sterile cardiac probe inserted through an open-ended lumen of a flexible chest drain tube having one end extending into the thoracic cavity of a patient. The probe is surgically fastened to the aorta or the pulmonary artery of the patient in order to obtain information relating only to the volume of flow of blood through such vessels.
Czar et al. U.S. Pat. No. 5,205,292 discloses a removable surgically implanted sterile transducer for attachment to a blood vessel in order to evaluate the volume of blood flow in the vessel.
Abrams et al. U.S. Pat. No. 4,671,295 discloses a method and apparatus for measuring cardiac output through the use of a transducer introduced into the patient's trachea to transmit and receive ultrasound waves and evaluate the flow of blood in the ascending aorta through the use of Doppler frequency differences.
Weber U.S. Pat. No. 4,886,059 discloses an endotracheal tube including a transducer assembly disposed to transmit ultrasound waves in selected directions through the tracheal wall to collect Doppler data for blood flow velocity calculation and to calculate the diameter of the artery.
None of the devices disclosed in the patents discussed above, however, provides for placement of a non-sterile sensor such as an ultrasound transducer in a desired position within a sterile body cavity of a patient quickly, easily and repeatedly, nor does any of them provide a way of obtaining scanned ultrasound two-dimensional echo images of internal organs without having to transmit the ultra-sound waves into the body from an external location.
What is desired, then, is a device and a method for its use in permitting a non-sterile sensor such as an ultrasound scanning transducer to be introduced into a body cavity of a patient quickly and easily in a sterile fashion, and without performing additional surgical procedures or sedation as part of the introduction of the transducer. It is also desired to provide for removal and later temporary reintroduction of a non-sterile sensor without further surgical procedures or sedation.
SUMMARY OF THE INVENTION
The present invention provides an answer to the need explained above by providing a sterile probe-receiving tube which makes available a sterilely protected non-sterile space within a patient's body where a sensor probe may be inserted when necessary, either to be left in place or removed and reinserted later, as necessary. In accordance with the invention such a probe-receiving tube is supported by an elongate support member, which may have other supportive functions, attached to and extending along at least a distal portion of the probe-receiving tube, and a proximal portion of the probe-receiving tube is available outside the patient's body as an entrance through which to insert a non-sterile probe into the interior of the patient's body. In one embodiment of the invention a proximal portion of the elongate support member is available outside the patient's body for use if necessary to adjust the location of the probe enclosed within the probe-receiving tube attached to it.
In a device which is one embodiment of the invention the elongate support member is in the form of a chest drain tube placed within the thoracic cavity of a cardiac surgery patient prior to closing the patient's chest, with the proximal portion of the device being located externally of the patient's abdomen and the distal portion of the device extending through an opening in the abdominal wall and thence toward the patient's heart, so that the probe-receiving tube is available in a desired position to provide an ultrasound two-dimensional echo image of the patient's heart or continuous-wave pulse gated, and color flow Doppler ultrasound data during the post-surgery period when it is critical to evaluate the function of the heart.
In a preferred embodiment of the invention a conduit may be provided through which to introduce an acoustic coupling medium into the distal portion of the probe-receiving tube to enable a sensor utilizing sound waves, such as an ultrasound transducer probe, to be operated efficiently. Since the distal end of the probe-receiving tube of a device according to the invention is closed, the internal space within the probe-receiving tube is isolated from the interior of the patient's body cavity, and introduction of a non-sterile sensor probe or of material introduced through the conduit as an acoustic coupling agent cannot result in contamination of the patient's body cavity.
In a device that is another embodiment of the invention a support member includes a separable part and may include a cutting device by which the separable part can be removed easily from the support member and the probe-receiving tube once it is located in a desired position, leaving a support member of reduced size attached to the probe-receiving tube.
In accordance with the method of the invention a sensor probe can be placed quickly and easily in a desired location within a patient's body by inserting it into the patient's body through the probe-receiving tube at any time after the probe-receiving tube, supported by the elongate supporting member, has been installed.
Thus, according to the method of the invention, a non-sterile ultrasound probe may be inserted through the probe-receiving tube into a position proximate an internal organ such as a patient's heart to obtain an ultrasound echo image of the organ, as for providing an ultrasound image of the heart at a time subsequent to the completion of cardiac surgery.
Once the probe-receiving tube is in a required location, part of a support member is removed in accordance with the method of the invention, and the probe-receiving tube is left in place, supported by a support member of reduced size, but ready to receive a sensor probe quickly when needed.
In a separate preferred embodiment of the present invention, the elongate support member has at least one integrated fastening mechanism suitable to anchor the device within the patient's body. The fastening mechanism may be, for example, a transversely-extending fastener passageway, a suture wing, a suture loop, or a suture passageway. If a plurality of fastening mechanisms are used, they may be attached in an alternating step-wise arrangement or in pairs on opposite longitudinal sides of the exterior surface of the elongate support member.
In yet another separate preferred embodiment of the present invention a sterile sensor that may be attached directly to an interior blood vessel or a pair of sterile temporary pacing wires that may be attached directly to a heart is interconnected with an elongate support member and/or a probe-receiving tube. A method of the present invention for using the sterile sensor to measure a property of the blood within an internal blood vessel includes interconnecting a first finger projection having an emitter therein to a first side of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for use in temporary insertion of a sensor within a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for use in temporary insertion of a sensor within a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for use in temporary insertion of a sensor within a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2564692

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.