Surgery – Instruments – External pressure applicator
Reexamination Certificate
2000-05-12
2002-12-31
Truong, Kevin T. (Department: 3731)
Surgery
Instruments
External pressure applicator
Reexamination Certificate
active
06500192
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention concerns a device for the treatment of peripheral circulatory disorders that consists of at least one treatment cylinder into which a body limb to be treated can be introduced at least in part through a closing device, and in which by means of a device for the admission and evacuation of air and of control elements a compression or/and decompression can be created, and in particular the closing device for the treatment cylinder which prevents the veins from becoming obstructed when a compression or/and decompression is created in the treatment cylinder.
As early as 1834 JUNOD studied the effects of compression on the body or one of the body extremities and invented devices with which he took hyperbaric baths.
At the end of the 19
th
century BIER subjected arms or legs to a decompression that caused a venous congestion which he put to use as a therapeutic measure for rheumatic pain.
1932 HERRMANN studied the literature concerning hypobaric treatments and found that this method could activate arterial blood flow in the extremities. In the same year he established that the effect was enhanced when an extremity was subjected to alternating hypobaric and hyperbaric phases.
Since that time the devices subsequently built possess programmes with hyperbaric and hypobaric phases. They had a cylinder consisting of glass or Plexiglas that was closed off with a rubber hose while advantage was taken of the elasticity of the rubber for closing.
This procedure inevitably brought about an obstruction of the veins and, depending on the intensity of the decompression, an obstruction of the arteries, so that the treatment as such only made use of the venous congestion that had been applied as a therapeutic measure by Bier.
One also knows inflatable boots made of flexible material (JOBST), but these can only exert a compression on an extremity, while the effect of this compression, since it is limited to the surface, never can attain the effect exerted by direct air pressure.
1956 the VASOTRAIN device appeared on the market, where the treatment cylinder was sealed with an inflatable sleeve. Despite this improvement of the method of exerting compression and decompression on an extremity, the VASOTRAIN also produced venous congestion, and BARBEY reports that because of the appearance of petechia, treatments with the VASOTRAIN had to be discontinued.
WERDING in 1960 designed the VASCULATOR, which also had inflatable sleeves, with the new feature, however, that these sleeves always maintained their pressure on the extremities at a minimum value, i.e., their internal pressure only rose until the desired compression was attained, whereupon a certain, intended loss of compression could be, both compensated with the pump or kept constant by slight inflation of the sleeve.
During automatic changeover of the device to decompression, the sleeve emptied continuously in proportion to the intensity of the decompression.
This method very largely reduced an obstruction of the veins, but not enough, as the VASCULATOR had to place the extremity in a high position in order to aid venous return to the heart.
It is the aim of the present invention to eliminate the problems of venous congestion described above, and it is proposed to provide a closing device for treatment cylinders which is capable of keeping even the veins that are located at the surface of an extremity, as pervious as possible during a hypobaric phase.
SUMMARY OF THE INVENTION
According to the invention, this problem is resolved by the fact that the closing device is provided with a sleeve having a thick-walled disk covered on its two flat sides by thin-walled, highly elastic membranes, that the disk is provided with a first opening and the membranes are provided with second openings which are situated opposite to the first opening and have diameters smaller than that of the first opening, and that the treatment cylinder is provided with a rigid support element against which the entire sleeve is sealingly pressed with the aid of clamping means. By virtue of their elasticity, these membranes adapt to the form of the extremity so as to function as a membrane sleeve, while between the two rubber membranes an air cushion is created which also serves as a closing means that will not compress. The treatment cylinder is then closed in such a way that the intensity of the pressure variation is attained and kept constant during a specific period of time without a need for inflation of the sleeve, while an obstruction of the venous return to the heart is prevented by this solution for the entire duration of the treatment.
It is particularly advantageous to select a rubber disk, since this can be supported on an annular ridge provided at the entrance of the treatment cylinder and then pressed against this ridge with the aid of a rigid ring and clamps in such a way that the annular ridge penetrates into the rubber and thus seals the treatment cylinder hermetically.
It is advantageous, too, to provide the opening of the treatment is cylinder opposite to the closing device with an identical device which gives access to the interior of the treatment cylinder and can be provided with a heating or cooling device.
The closing device can advantageously be characterised by the fact that the treatment cylinder is axially mobile so as to facilitate introduction of an extremity.
It is particularly advantageous to continuously keep the treatment cylinder in a high position even during a hypobaric phase, while the blocking system of the high position at the same time blocks the treatment cylinder axially.
With this continuous high position of the treatment cylinder, even during the hypobaric phase, on one hand one attains a expanded state of capillaries, venules, and veins by means of the decompression, and an arteriolar dilation and thus a hyperemia by reflex action, on the other hand one attains at the same time an increased venous return to the heart, which in its volume is practically proportional to the arterial capacity of the vessels of the extremity, since the veins of the extremity remain pervious thanks to the closing device of the invention.
It is particularly advantageous that the closing device need not be inflated, which substantially simplifies the electronic controls, since these controls only regulate the hyperbaric and hypobaric phases as well as the periods of time during which they are kept constant, which largely eliminates possible breakdowns or malfunction. These features lead to a device exhibiting a precise and safe functioning.
REFERENCES:
patent: 2082190 (1937-06-01), Vogt et al.
patent: 2113253 (1938-04-01), Gray
patent: 3329142 (1967-07-01), MacLeod
patent: 4624248 (1986-11-01), Poole et al.
patent: 6007559 (1999-12-01), Arkans
patent: 301746 (1972-09-01), None
patent: 8905848 (1989-08-01), None
patent: 0284772 (1988-10-01), None
LandOfFree
Device for treating peripheral circulatory disorders and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for treating peripheral circulatory disorders and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for treating peripheral circulatory disorders and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2972827