Device for transmitting electric current between two...

Electrical connectors – With relatively guided members and intermediate pliable... – Relatively movable about axis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06736657

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a device for transmitting electric current between two components, which can rotate with respect to one another, of a steering device for motor vehicles.
Apparatuses such as these are used for transmitting electric current (in particular signal current and/or power current) from the vehicle electronics (which are arranged fixed to the bodywork) of a motor vehicle to the steering wheel, and vice versa. This allows electrical or electronic functional elements which are provided on the steering wheel, such as the trigger for the gas generator of an airbag unit, steering wheel heating or electrical switches for operating indicator lights, windshield wipers or a radio, to be integrated in the steering wheel and to be supplied with current from the vehicle electronics.
A device such as this for transmitting electric current is known from DE 41 11 699. This device has a rotor which is associated with the steering wheel and can rotate together with it, as well as a stator which is associated with an assembly whose position is fixed with respect to the rotary movement of the steering wheel, for example the steering column cladding of the steering device. The rotor and the stator are connected to one another by means of a flexible electrical conductor, which is in the form of a strip-like printed circuit. This flexible electrical conductor is rolled up on or unrolled from an intermediate panel, which is formed between the rotor and the stator, depending on the rotation direction of the rotor.
SUMMARY OF THE INVENTION
In the known apparatus, the number of individual conductor tracks in the printed circuit on the flexible conductor is restricted by its dimensions. If more conductor tracks are required, then either a larger flexible conductor or a number of conductors must be used. In both cases, this leads to an increased amount of space being required for the flexible conductor in the apparatus.
One object of the invention is to provide a device for transmitting electric current which provides a great a number of conductor tracks for current transmission as possible, while requiring little space.
According to an embodiment of the invention, an apparatus for transmitting electric current between two components (a stator and a rotor), which can rotate with respect to one another is provided.
According to this embodiment, the flexible conductor which runs from the stator to the rotor is in the form of a flexible printed circuit. When the steering wheel is rotated, this flexible printed circuit can be wound up onto or unwound from a winding element, and has a flat flexible substrate, on whose front face and rear face conductor tracks run from the stator to the rotor.
As a flexible substrate, a flexible printed circuit such as this has, for example, an electrically insulating substrate film which is provided with a number of metallic conductor tracks on both sides, with the conductor tracks being covered by insulator films.
In order to produce the desired conductor track design, areas of the thin metal layers which are not required in this case on the front face and rear face of the flexible substrate film are removed, for example by a photolithographic and etching technique, so that the desired individual conductor tracks are produced.
The use on both sides of at least one substrate film as a flexible printed circuit thus makes it possible, in a simple manner, to double the surface area to which the desired circuit and conductor track design can be applied.
Furthermore, in addition to transmitting current, the flexible printed circuit can also carry out other functions, by integrating further electrical or electronic components in the printed circuit. This reduces not only the number of separate electrical and electronic components in the area of the steering device, but also the space that they require. Thus, in addition to transmitting electrical signals from the stator to the rotor, a single printed circuit can also carry out a large number of additional functions.
The flexible printed circuit has in each case at least one associated electrical connection on the stator and on the rotor, with the flexible printed circuit having electrical contact elements, which can make electrical contact with these connections, at its stator end and at its rotor end. Said contact elements are preferably in the form of plug elements, which can be inserted into the corresponding electrical connections on the stator and on the rotor, and are connected to the conductor tracks on the flexible substrate by means of electrical lines.
The contact elements for the flexible printed circuit may in this case be provided both for making contact with electrical connections which are arranged essentially transversely with respect to the direction in which the flexible printed circuit extends and for making contact with electrical connections which are arranged essentially parallel to the flexible printed circuit.
If a large number of conductor tracks are required between the stator and the rotor, then it is advantageous to design the conductor tracks (which, for example, are produced by printing a metal layer on both sides of the flexible substrate film, followed by selective etching) such that the distance between the individual conductor tracks is greater in the region of the rotor end and/or of the stator end of the printed circuit than in the central section of the printed circuit. This allows the central section of the flexible printed circuit, which is wound up and unwound during rotation of the steering wheel, to be made particularly narrow. The flexible printed circuit then broadens out at both of its ends, so that the individual conductor tracks there can be arranged further apart from one another, thus making it easier to make electrical contact with the individual conductor tracks.
It is also advantageous for the flexible printed circuit to have reinforcing elements at its stator end and/or at its rotor end, in particular in the region of its electrical contact elements, in order to give it robustness. These reinforcing elements may be formed, in particular, by plastic elements, which are molded or clipped onto the flexible printed circuit. FR
4
boards are particularly suitable for use as reinforcing elements, which specifically support the flexible substrate of the printed circuit, which is preferably composed of polyester or polyimide.
The flexible printed circuit preferably has means to ensure strain relief for the electrical contact between the electrical lines and the conductor tracks on the flexible substrate film of the printed circuit. By way of example, the reinforced regions may have a holding section which has a number of guide cutouts, into which the electrical lines fit and can be connected with a force fit to the reinforcing elements.
In order to simplify the installation of said electrical contacts, it is advantageous for the reinforcing elements to comprise at least two individual elements, which are in the form of small panels, are essentially of the same size, and can be joined together such that the flexible printed circuit and the electrical lines that are supplied to it are enclosed.
The individual elements can be attached to one another at the joint edges by means of film hinges, so that the flexible printed circuit and the electrical contact elements can be enclosed by the individual elements in a simple manner, by means of a folding mechanism.
The flexible printed circuit can either be connected to the stator and to the rotor, respectively, at its ends via latching elements, or else can be adhesively bonded to the stator and to the rotor, respectively. The connection is in this case advantageously provided via said reinforcing elements.
A further embodiment of the invention has a broad rotor end and/or stator end on the flexible printed circuit, with the conductor tracks which run on the front face and rear face of the flexible printed circuit ending in regions which are arranged alongside one another on the flexible printed circu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for transmitting electric current between two... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for transmitting electric current between two..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for transmitting electric current between two... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200036

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.