Device for the treatment of hydrocephalus

Surgery – Devices transferring fluids from within one area of body to... – With flow control means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S128000

Reexamination Certificate

active

06283934

ABSTRACT:

The present invention relates to a cerebrospinal fluid shunt system for shunting cerebrospinal fluid from the brain ventricles to sinus sagittalis.
GENERAL BACKGROUND
Cerebrospinal fluid is formed in the ventricular system irrespective of the intracranial pressure (ICP). The formation rate is constant, with a range of 0.3-0.4 ml/min. (Borgesen and Gjerris 1987). Hydrocephalus, i.e. a pathological increase in the amount of intracranial located cerebrospinal fluid, arise when the outflow of the cerebrospinal fluid is obstructed leading to an increase in the intracranial pressure and in the amount of intracranially located cerebrospinal fluid. The obstruction may be localized in the aqueduct or the IV ventricle or in the normal resorption sites in villi arachnoidales in connection with the sagittal sinus. Pathoanatomically, hydrocephalus is divided in communicating or non-communicating hydrocephalus dependent whether there is passage between the ventricular system and sinus sagittalis or not. Communicating hydrocephalus, which is generally caused by obstruction located in the villi arachnoidales for example due to fibrosis formed in response to bleeding in the liquor, is the most common form of hydrocephalus.
The treatment of hydrocephalus aims at reducing the intracranial pressure to normal, physiological values and thereby also reducing the amount of cerebrospinal fluid towards normal, physiological values. This is obtained by deducting cerebrospinal fluid (CSF) from the ventricular system to another resorption site, bypassing the pathological obstruction by use of a CSF shunt. The most suitable diversion sites for CSF have been found to be the right atrium of the heart and the peritoneal cavity. Valves have been designed to hinder retrograde flow in the drainage system which could occur due to pressure differences between the intracranial cavity and the resorption site, e.g. in connection with increased chest and/or abdominal pressure in connection with e.g cough or defecation.
Until the last 6 years the CSF shunts have been based on the principle of maintaining a constant ICP regardless of the flow-rate of CSF. The CSF shunts have been constructed to cut off CSF-flow when the differential pressure between the inlet and the outlet of the CSF shunt was reduced to a predestined level, called the opening pressure of the shunt. This has been necessary in order to maintain a basal ICP due to the use of an unphysiological resorption sites located outside the intracranial cavity. Example of a such ICP shunt is shown in U.S. Pat. No. 4,904,236 which is a fluid flow control device for controlling the flow of fluid from one region of the body to be drained to another region.
Clinical experience has proven that this principle of shunting is not an ideal solution. Sudden rises of the ICP, e.g. due to change of position, physical exercise, or pathological pressure waves result in excessive CSF drainage. This so-called hyperdrainage leads to subnormal ICP for shorter or longer periods of time. Several reports in the literature (Aschoff et al., 1995) point at problems due to this hyperdrainage, and especially the pronounced narrowing of the ventricles has been pointed out to be the main factor leading to malfunctioning of the implanted shunting device. The reason is that the ventricular walls may collapse around the ventricular CSF shunt device, and particles (cells, debris) may intrude into the shunt device.
This has led to introduction of multiple designs of drains to be used in the ventricular cavity. An effect of these different drain designs on the complication rates of shunts has not been proven.
In the recent years CSF shunt devices have been introduced which aim at regulating the flow rate of CSF, see e.g. U.S. Pat. No. 4,781,673 which describes a brain ventricle shunt system with flowrate switching means.
An alternative flow regulating mechanism of the Orbis Sigma shunt results in partial closure of the shunt at increases in the differential pressure above 10 mm Hg, and in reopening of the shunt when the differential pressure exceeds 35 mm Hg. It has been shown that this type of shunt indeed leads to a reduction of the complication rate of the system. Another shunt system, The Pudenz Delta valve, also hinders excessive CSF outflow at higher pressure levels. U.S. Pat. No. 4,605,395 is an example of a shunt device comprising a nonlinear hydraulic filter valve which closes in the event of large changes in flow rate.
Still, the above CSF shunt systems drain the CSF to a resorption site that is far from normal and to a site where the pressure difference over the shunt may differ substantially from the normal, physiological pressure ranges.
Occasional reports in the literature have described the use of ventriculo-superior sagittal shunts for the treatment of hydrocephalus (Hash et al., 1979 and Wen, 1981). In the article by Hash et al. it is concluded that the described technique wherein a low-low or extra-low pressure one way valve is used may be suitable for patients with high pressure hydrocephalus and of particular value in very ill or debilitated patients because of the rapidity with which it can be performed under local analgesia whereas its use in normal or low pressure hydrocephalus must still be evaluated. This article is followed by a comment by the editor that there are a multitude of remaining critical questions. One of the problems not addressed in this study is overdrainage due to the fact that the used valve is not flow-restricting.
Wen reports the treatment of fifty-two children with hydrocephalus with ventriculo-superior sagittal sinus shunts by use of a modified Pudenz tube. In this tube there is provided slits which provide an opening pressure of about 6 mm Hg. No clear conclusion can be drawn from this report except that shunting to the sagittal sinus does not inherit serious complications.
EP 066 685 describes a drain comprising a bundle of one or more microtubules, each being about 0.44 mm in diameter for controlling hydrocephalus comprising a plurality of pliable microtubular members for conducting cerebrospinal fluid from the cerebral ventricle to selected areas of the human body, e.g. to the subarachnoid space. Essentially, this patent relates to a draining system aiming at avoiding obstruction due to clotting of the draining system and is not flow-regulating.
SUMMARY OF THE INVENTION
The device for treatment of hydrocephalus of the invention leads the CSF from the ventricles to the sagittal sinus beneath the sagittal suture. The present invention thus provides a CSF shunt system that treats the hydrocephalus by bypassing the pathological obstruction, but diverts the CSF into its normal resorption site, and the pressure difference over the CSF shunt system is similar to the physiological pressure differences between the ventricles and the resorption site, thus regulating the CSF flow to be within the normal range and avoiding complications due to hyper drainage. Where appropriate, the present invention also relates to a method of treating hydrocephalus by use of the cerebrospinal fluid shunt system of the invention.


REFERENCES:
patent: 3233610 (1966-02-01), Wade
patent: 3566875 (1971-03-01), Stoehr
patent: 3894541 (1975-07-01), El-Shafei
patent: 4182343 (1980-01-01), Inaba
patent: 4377169 (1983-03-01), Banks
patent: 4605395 (1986-08-01), Rose et al.
patent: 4781673 (1988-11-01), Watanabe
patent: 4784648 (1988-11-01), Singh et al.
patent: 4904236 (1990-02-01), Redmond et al.
patent: 5000731 (1991-03-01), Wong et al.
patent: 5042974 (1991-08-01), Agarwal
patent: 066 685 (1982-12-01), None
patent: 344 895 (1989-12-01), None
patent: 409 511 (1991-01-01), None
A. Aschoff et al., “Overdrainage and shunt technology”, Child's Nerv Syst (1995) 11:193-202.
S.E. Børgesen et al., “Measurement of Resistance to CSF Outflow — Clinical Experience in 333 Patients”, Intracranial Pressure VII, pp. 353-355.
S.E. Børgesen et al., “Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow”, J. Neurosurg 67:535-539, 1987.
S.E. Børgesen et al.,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for the treatment of hydrocephalus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for the treatment of hydrocephalus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for the treatment of hydrocephalus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2510204

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.