Device for the sterile filling of bottle shaped containers

Fluent material handling – with receiver or receiver coacting mea – With soil removing – coating – lubricating – sterilizing and/or... – With cleaning – coating or drying means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S048000, C141S129000

Reexamination Certificate

active

06820660

ABSTRACT:

TECHNICAL FIELD
This invention relates to a device for the sterile filling of bottle-shaped containers with liquid foodstuffs, for example, drinks in which an intermittently driven conveyor in a line in the conveyance direction (first direction of movement), has container carriers arranged one behind the other which can be moved through processing stations, and is arranged in a hygiene chamber provided with openings for the containers to pass through at the entrance and exit, and with at least one inlet for sterilizing medium.
BACKGROUND OF THE INVENTION
For the manufacture and in particular the completion of containers, in the case of known machines, the containers are held in work-piece carriers, and by means of continuously circulating conveyor belts, intermittently conveyed to individual processing stations wherein the respective container, for example, after unfolding is completed, filled and finally sealed. The conveyor belts run around two guide rollers in which the work-piece carriers in their conveyor arcs are turned from a vertical alignment into a horizontal, and then again into a vertical alignment. The vertical alignment is for the process level because such conveyors are frequently used in the packaging of liquid foods which are filled from above into the container open at the top, standing underneath. In many conveyors the work-piece carriers are rigidly concatenated, for example, via roller or link chains. If such conveyors are to be used in the foodstuffs sector, sterile packaging is often necessary, and in the case of roller or link chains, moving parts have to be lubricated, with the result that such conveyors cannot operate in a hygienic clean room where the filling of the containers takes place.
In order to increase the mechanical output of packaging machinery, and in particular of filling, i.e., in order to be able to process a larger number of containers per unit of time in a machine, along the process level several container carriers have been arranged next to each other, which are therefore arranged at right angles to the first direction of movement. Insofar as continuous conveyors of such a kind can be used at all for multiplication in the width, the width of such a process level is however at least for static reasons subject to limits which do not allow a further increase in output.
Similarly to continuous conveyors, according to the invention the containers are also intermittently conveyed back in a first direction of movement (conveyance direction) in container carriers on a first process level in positions below various processing stations, and on a second return level in a second direction of movement, parallel to the first direction of movement, forming a conveyance circuit.
Schematically, the conveyance circuit runs according to a loop or a rectangle when the conveyor is viewed from the side. There are open filling systems without hygiene chambers with measures for sterilization of the filling product and the inside of the container, including the neck of the bottle in the case of bottle-like containers. There are also closed conveyance systems which have conveyors in a closed hygiene room.
In the known machines described above, with conveyor belts and work-piece carriers held on these, in which the respective container is conveyed under the processing stations, the work-piece carriers act as blades so that containers introduced from bacteria-contaminated ambient air are conveyed onwards, at least partially, on the outside also with the bacteria-contaminated air in a clean room, or else bacteria-contaminated air outside and inside the containers are conveyed under the sterilized processing stations. Therefore, bacteria are disadvantageously conveyed from outside to positions where the air volume is actually meant to be sterile. This disadvantage has been partly recognized, and attempts have been made to remedy it, by immediately re-extracting the air which partially and possibly contains bacteria. However, with this air is also extracted sterilizing medium which is later missing during sterilization. This could only be compensated for by adding very large streams of sterilizing medium.
A person skilled in the art therefore would not know how the entry of bacteria-contaminated air could be avoided with the known devices, and on the other hand, how the growth conditions, in particular in closed systems with hygiene chambers, are to be reduced, so that, for example, bacteria introduced do not grow, or spread less vigorously. A person skilled in the art would pump sterile air or a sterilizing medium in the form of sterile air and sterilization agent, e.g. H
2
O
2
, into the hygiene room, and continuously maintain therein an excess pressure of this sterilizing medium vis-a-vis the environment. However, this would have the disadvantage not only of consuming a very large amount of sterilizing medium and energy for the sterile air, but the environment would also be heavily charged with hydrogen peroxide, with all the health risks.
SUMMARY OF THE INVENTION
The object of the invention is therefore to create a device of the type initially mentioned, in which the growth conditions for microorganisms, bacteria and spores are reduced in a hygiene chamber and the preconditions for contamination already in the hygiene chamber are reduced despite the use of small quantities of sterilization agent.
This object is achieved by means for the adjacent movement of the container carriers in the region of the upper side of the conveyor, such that the container carriers form a predominantly closed field, which is arranged under formation of an upper space at a distance below the upper wall of the hygiene chamber. Further, through an inlet for the sterilizing medium produced in the upper wall of the hygiene chamber, means are provided for the forcing of the sterilizing medium, under excess pressure, into the upper space of the hygiene chamber, and moreover, by means for the conveyance of the sterilizing medium essentially parallel to the conveyance direction (first direction of movement) of the container carriers, gaps are provided at the ends of the closed carrier field, next to the end-surfaces of the hygiene chamber in order to guide the sterilizing medium out of the upper space and through the openings for containers to pass through, formed as dynamic locks into gas extraction devices provided next to the latter and outside the hygiene chamber. The whole conveyance system according to the invention is therefore constructed such that one container carrier is in contact with the next, and several container carriers in the region of the upper surface of the conveyor form a complete surface or a field. This field represents a type of wall, even if it has holes and gaps. This wall forms the lower partition of an “upper space” which lies between the upper wall of the hygiene chamber and precisely this closed field. This upper space above the closed field formed by the container carrier can even be open in front and behind at the field. Nevertheless, it is possible to imagine the upper space limited at the sides, above and below, in the upper region of the hygiene chamber. If in the upper wall of the hygiene chamber, i.e. above the upper space, at least one inlet is produced for the sterilizing medium, then this upper space can be filled with sterilizing medium via the at least one inlet as desired. This is achieved particularly favorably by means, for example, impeller wheels, fans, pumps, for the forcing of the sterilizing medium, under excess pressure, into the upper space of the hygiene chamber. If for example fresh or highly concentrated sterilizing medium enters the upper space of the hygiene chamber through the upper wall, then this stream of sterilizing medium can be directed and optionally also introduced at different speeds by means of different pressures. The container carriers can be constructed, or provided with additions constructed in such a way that they form means for the guiding of the sterilizing medium essentially parallel to the conveyance direction (t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for the sterile filling of bottle shaped containers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for the sterile filling of bottle shaped containers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for the sterile filling of bottle shaped containers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278898

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.