Device for the mapping of cardiac arrhyhmia foci

Surgery – Diagnostic testing – Structure of body-contacting electrode or electrode inserted...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S381000, C607S122000

Reexamination Certificate

active

06466811

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of Invention
This invention relates to a device for the mapping of cardiac arrhythmia foci. In particular, it relates to a catheter containing a grouping of small, non-ring electrodes preferably formed in a diamond shape which form a pair of bipoles on the catheter, which catheter is useful for the mapping of cardiac arrhythmia foci.
2. Prior Art
Catheters have been in use for medical procedures for many years. For example, one use is to convey an electrical stimulus to a selected location within the human body. Another use is to assist in monitoring and measuring electrophysiological activity for diagnostic tests within the human body. Thus, catheters may assist in examination, diagnosis and treatment within a human body while positioned at a specific location, which is otherwise inaccessible without more invasive procedures. In use, catheters are inserted into a vein or artery which is near the body surface. These catheters are then guided to a specific location for examination, diagnosis or treatment by manipulating the catheter through the artery or vein of the human body.
Catheters have become increasingly useful in remote and difficult to reach locations within the body. Catheters are used increasingly for medical procedures involving the human heart. In these procedures a catheter is typically advanced to the heart through veins or arteries and then is positioned at a specified location within the heart. Typically, the catheter is inserted in an artery or vein in the leg, neck, upper chest or arm of the patient and threaded, often with the aid of a guidewire or introducer, and guided through various arteries or veins until the tip of the catheter reaches the desired location in the heart.
Cardiac arrhythmia may be transient or persistent. While most arrhythmias occur in individuals having other forms of underlying heart disease, some arrhythmias occur independently. While atrial arrhythmias do not directly cause death as frequently as ventricular arrhythmias, they increase the risk factor for a number of other diseases such as strokes, thrombosis, atherosclerosis, systemic and cerebral embolism and cause a number of additional medical problems. Atrial fibrillation is the most common sustained heart arrhythmia. It is estimated to occur in upwards of 0.4 percent of the adult population and perhaps as many as 10 percent of the population who are 60 years or older.
Certain patients with symptomatic or life threatening cardiac arrhythmias cannot be adequately treated by drugs or common medical devices, such as defibrillation, or by cardioversion. Other forms of treatment are then mandated, which may include surgery.
Another procedure used for treatment of certain types of cardiac arrhythmia within the last 10 to 15 years is catheter ablation. This procedure has been used to interrupt or modify existing conduction pathways associated with arrhythmias within the heart. The particular area for ablation depends on the type of underlying arrhythmia. One common ablation procedure treats atrioventricular (AV) nodal reentrant tachycardia. With this problem ablation of the fast or slow AV nodal pathways has become an accepted treatment. The use of ablation catheters for ablating locations within the heart has been disclosed, for example in U.S. Pat. Nos. 4,641,649, 5,263,493, 5,231,995, 5,228,442 and 5,281,217.
In addition, catheter ablation for the treatment of ectopic atrial tachycardia is disclosed, for example, in Walsh, Edward P. “Ablation of Ectopic Atrial Tachycardia in Children”
Radio Frequency Catheter Ablation of Cardiac Arrhythmias
, Chap. 23 (1994). See also Tracey, C.N. “Radio Frequency Catheter Ablation of Ectopic Atrial Tachycardia Using Paced Activation Sequence Mapping” J. Am. Coll. Cardial. Vol 21, pp. 910-917 (1993).
The sources of energy used for catheter ablation vary. Initially, high voltage, direct current (D.C.) ablation techniques were commonly used. However, because of problems associated with the use of D.C. current, radio frequency (RF) ablation has become a preferred source of energy for the ablation procedures. Other energy sources also considered for ablation of heart tissue include laser, ultrasound, microwave and fulgutronization.
Ablation of a precise location within the heart, such as a focus of a cardiac arrhythmia, requires the precise placement of the ablation catheter within the heart. Precisely positioning the ablation catheter is especially difficult because of the physiology of the heart, particularly as the ablation procedures generally occur while the heart is beating. Commonly, the placement of the catheter is determined by a combination of electrophysiological guidance and fluoroscopy (placement of the catheter in relation to known features of the heart which are marked by radiopaque diagnostic catheters which are placed in or at known anatomical structures such as the coronary sinus, high right atrium and the right ventricle).
Accordingly, the treatment of cardiac arrhythmias has increasingly been dependent upon the ability to identify the precise location or origin in the heart of the abnormal rhythm. The prior art practice for locating an abnormal rhythm is to place a catheter within the heart carrying a standard array of ring and/or tip electrodes. Direct contact of the tip electrode with the cardiac tissue is used for making an intracardiac electrogram in a manner similar to that has been practiced for many years with respect to pacemaker sensing. See, for example, U.S. Pat. Nos. 5,156,151 and 4,365,639.
A relatively new process for sensing arrhythmia within a heart utilizes one or more pairs of circumferential, orthogonal sensing electrodes, such as are disclosed in U.S. Pat. No. 4,365,639. See also Canadian Patent No. 1,192,263. A series of circumferential orthogonal electrodes located in pairs around the body of a catheter are disclosed in U.S. Pat. Nos. 5,385,146, 5,450,846 and 5,579,764. These patents disclose a process whereby a pair or a series of pairs of circumferential orthogonal electrodes are used in conjunction with an ablation or pacing catheter simultaneously to sense electrophysiological activity in the heart and to pace or ablate predetermined locations in the heart. Only localized cardiac signals at precise locations within the cardiac tissue of the heart immediately adjacent to the predetermined location where the orthogonal electrodes are positioned are sensed by the orthogonal electrode pairs. The specific design and arrangement of these orthogonal electrode pairs limits their use within the heart to simultaneous sensing and pacing or ablating activities. While the procedures disclosed by these patents are quite useful once the focus of the cardiac arrhythmia has been determined, it is necessary to first identify the general location of the arrhythmia focus within the cardiac tissue.
Accordingly, it is an object of the invention to disclose a product for the mapping of cardiac tissue to disclose the location of cardiac arrhythmia foci.
It is a further object of the invention to disclose a catheter containing a plurality of point electrodes which form a pair of bipoles for the sensing of the direction of an activation wave generated by cardiac arrhythmia foci as the wave passes the pair of bipoles.
It is a still further object of the invention to disclose a catheter for the sensing of the direction of an activation wave generated by cardiac arrhythmia foci in the heart as the wave passes a pair of bipoles secured to the catheter, wherein the bipoles are formed from two pair of point electrodes formed in a diamond shape.
It is a still further object of the invention to disclose a catheter containing a plurality of point electrodes formed in a pattern which is capable of sensing the activation wave from an ectopic atrial tachycardia and other forms of cardiac arrhythmia focus within the heart.
It is a still further object of the invention to disclose a process for the mapping of cardiac arrhythmia focus in the heart by use of a catheter containing a plurality of point electrodes fo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for the mapping of cardiac arrhyhmia foci does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for the mapping of cardiac arrhyhmia foci, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for the mapping of cardiac arrhyhmia foci will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2997309

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.