Device for the feeding of mash

Foods and beverages: apparatus – Beverage – Post-primary-alcoholic fermentation operations

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C099S277000

Reexamination Certificate

active

06336394

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a device for the feeding of mash into a lauter tun with a mash pump, a main pipe which is connected to the mash pump and at least two partial stream pipes which connect the main pipe to a feed opening in the lauter tun in each case.
BACKGROUND OF THE INVENTION
The residence of the mash in the lauter tun is the pre-condition for a subsequent clarification of the wort. For this purpose the mash is pumped out of a mash container by means of a mash pump and pumped into the lauter tun by means of a pipe system which is connected to feed openings of the lauter tun. In order to distribute the mash as evenly as possible in the lauter tun and thereby achieve an even filter layer, the known installations have several feed openings in the lauter tun so that the mash can flow into the Tauter tun at several places at the same time. A partial stream pipe which is connected to a main pipe is connected to each of the feed openings so that when the mash pump is operating, mash can be fed from the mash container into the lauter tun by-means of the main pipe and the partial stream pipes.
The fact that the partial stream pipes are connected to the main pipe in different places is a drawback of the known devices for the feeding of mash. As the total pressure of the liquid in the main pipe decreases with increasing distance from the mash pump because of the volume streams drawn off at the individual partial stream pipes, the mash at the various partial stream pipes does not flow in with the same initial pressure.
As a result, the different pressure conditions in the various partial stream pipes cause the mash to flow out unevenly at the various feed openings of the lauter tun. Because of the uneven feeding of mash to the various feed openings, when the mash is being discharged an uneven filter layer forms on the base of the lauter tun, which has a negative influence on the outcome of clarification.
SUMMARY AND OBJECTS OF THE INVENTION
The primary object of the present invention is to provide a generic device for the feeding of mash by means of which a more even filter layer is formed when the mash is discharged.
According to the invention a device is provided for the feeding of mash into a lauter tun with a mash pump, a main pipe which is connected to the mash pump and at least two partial stream pipes which connect the main pipe to a feed opening in the lauter tun in each case. This arrangement allows the mash to be fed from a mash container into the lauter tun via the main pipe and the partial stream pipes when the mash pump is in operation. A buffer vessel is provided between the main pipe and the partial stream pipes. The mash flows out of the main pipe into the buffer vessel to which all partial stream pipes are connected. As a result, after transient processes have died away at the beginning of mash discharge a uniform total pressure forms in the buffer vessel so that the mash flows into all partial stream pipes with the same initial pressure. By this means the pressure conditions at the inflow openings of all partial stream pipes, i.e. at the transition from the buffer vessel to the individual partial stream pipes, coincide so that an even filter layer is formed.
The even formation of the filter layer is further improved when all partial stream pipes further have the same line resistance, since by this means the pressure conditions at all feed openings of the lauter tun also substantially coincide, so that the mash flows into the lauter tun through all feed openings in substantially identical conditions.
The line resistance of the partial stream pipes is substantially determined by their pipe diameter and the pipe length. For this reason the partial stream pipes should preferably have substantially the same pipe diameter and the same pipe length so that the same line resistance results. This may be achieved particularly simply, for example, in that all partial stream pipes are manufactured substantially of identical construction.
In principle the feed openings may be arranged anywhere in the lauter tun. To prevent the separation of the mash with the disadvantageous consequences thereof during mash discharge it is advantageous to arrange the feed openings in per se known manner on the underside of the lauter tun.
A relatively uniform distribution of the mash accompanied by relatively little manufacturing outlay is achieved at the same time when the lauter tun has at least two feed openings for the mash feed, all of which are arranged on an imaginary circular line, the center point of the circular line lying on the center axis of the lauter tun. By means of the circular symmetrical arrangement of the feed openings, a uniform flow path distribution is produced when the mash flows along the base of the lauter tun. For this purpose the feed openings should preferably be distributed on the circular line with a uniform angular pitch. The number of feed openings should be matched to the size of the lauter tun in particular.
In principle the buffer vessel may be arranged anywhere in the mashhouse installation. In order to be able to manufacture the partial stream pipes substantially of identical construction, the buffer vessel should preferably be arranged centrically to the center axis of the lauter tun, as the distance from one point of the center axis of the lauter tun to feed openings arranged symmetrically in the lauter tun base is substantially always the same.
According to a preferred embodiment the buffer vessel is substantially circular-symmetrical in form. The circular-symmetrical form of the buffer vessel ensures that the inflow openings of the various partial stream pipes, i.e. the transition from the buffer vessel to the partial stream pipes, have substantially the same distance from the individual feed openings of the lauter tun in each case. If a circular-symmetrical buffer vessel is arranged centrically to the center axis of the lauter tun in the brewery installation, it is ensured that partial stream pipes of substantially identical construction can be used to connect the buffer vessel to the individual feed openings and hence all partial stream pipes have the same line resistance.
The partial stream pipes should be as short as possible so as to permit line resistances which are as low as possible. In other words this means that the buffer vessel should be arranged centrically to the base of the lauter tun at the smallest possible distance, i.e. underneath the lauter tun. As in many brewery installations the main shaft of the lauter tun drive runs along the center axis of the lauter tun directly underneath the base of the lauter tun, in these cases the buffer vessel should preferably have a tubular passage, the diameter of which is at least slightly larger than the diameter of the main shaft of the lauter tun drive. As a result, the main shaft of the lauter tun drive may run in this sleeve-shaped passage of the buffer vessel so that the arrangement of the buffer vessel in the region directly underneath the lauter tun is possible. If the main shaft runs differently, if it is led into the lauter tun from the top for example, the passage may be omitted.
The buffer vessel may of course be formed as a separate component and in principle be arranged in any position of the mashhouse in the form of a correspondingly designed container. Since, however, the lauter collecting vessel of most known brewery installations is also arranged centrically to the center axis of the lauter tun underneath the base of the lauter tun and has a passage through which the main shaft of the lauter tun drive may pass, to reduce production costs it is advantageous to combine the buffer vessel according to the invention and the lauter collecting vessel of a brewery installation in a two-chamber vessel, the chamber for receiving the mash and the chamber for receiving the wort being separated from each other in pressure-tight manner by at least one partition, so that mash and wort are not mixed. The two-chamber vessel then preferably has a common passage through both c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for the feeding of mash does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for the feeding of mash, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for the feeding of mash will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2833883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.