Surgery: splint – brace – or bandage – Orthopedic bandage – Skeletal traction applicator
Reexamination Certificate
1999-10-12
2001-08-28
Brown, Michael A. (Department: 3764)
Surgery: splint, brace, or bandage
Orthopedic bandage
Skeletal traction applicator
C602S019000, C128S874000
Reexamination Certificate
active
06280405
ABSTRACT:
TECHNICAL AREA
The present invention relates to an improved device for traction of the human spinal column, for preventive purposes and as medical treatment, and for relieving forces from said spinal column, and which may be used also while the patients are moving around in an upright position.
STATE OF THE ART
Since at least 50 years, spinal ailments have been treated, with varying success, with the aid of traction of the spinal column, performed in various ways. Earlier, this traction treatment demanded that the patient be lying in bed, while traction forces were applied onto the patient's spine by means of wires connected to various parts of the body, said wires being tightened through weight or spring loading.
Also known, are treatments where the patient is sitting in a chair with a vertically arranged traction system, whereby the patient is able to move his arms during the treatment procedure, but no other mobility is possible. Later, some systems have also been presented which allow the patient to walk and to stand upright, while the traction is applied by means of fixed mechanical, adjustable devices, the length of which can be adjusted, see for example U.S. Pat. No. 2,835,247. This device is, however, far too bulky and cumbersome in practice for the patient to be able to dress in normal clothes and move around freely.
Devices where mechanical springs have been used to provide the traction are also known, for example from U.S. Pat. No. 2,886,031. This device is however impaired by the disadvantage of allowing forward bending of the spine, as the upper strut mountings are located too close to the spinal column, and this is totally inappropriate for some ailments. The basic version of this device has no resilient components at all, whilst a modification exhibits resilient support. However, the upper strut mountings are located to close to the spinal column to allow the patient to perform active self-traction by using his/her abdominal muscles. Furthermore, this device is largely designed from hard materials like metal, which are uncomfortable to the body.
U.S. Pat. No. 4,721,102 describes an apparatus comprising two belts to be tightened around the abdomen. Between these belts, spaced around the body in a number of locations, short coil springs are provided. This device has the disadvantage of only allowing treatment of a short part of the spinal column. Furthermore, it is uncomfortable to lie down on. U.S. Pat. No. 3,548,817 describes a similar device having the same drawbacks.
The patent U.S. Pat. No. 4,715,362 describes a device comprising two belts, one being supported by the patient's pelvis and the other around the chest below the arms. Between these belts there are several resilient force elements, all located on the patient's backside. The elements can be length adjusted by screwing, in order to fit the body shape of different patients and achieve suitable traction, and the pre-setting forces are varied by increasing or decreasing the number of active coil turns. Also this device has a number of weaknesses. For example, all the coil elements are located on the backside of the body. This means that a patient carrying this device tends to become stooping and forward bent. Also, due to the location of the suspension elements, the patient cannot practice any active self-traction by tensing his/her abdominal muscles. The spring devices are stated as being used for the relieving of shocks that might otherwise load the spinal column, and are thus apparently not contemplated to be used for providing traction, i.e. in such a manner that a mechanical setting of the length of the resilient elements will determine the static traction. This entails the spring forces having to be so high that the patient will generally experience the device as rigid. Furthermore, this device makes it difficult and uncomfortable for the patient to rest lying down on his/her back, and makes it difficult for the staff to attach the device onto a patient lying down, without turning the patient around. The longitudinal adjustment, necessary for adaptation of the device to different patients, demands a certain care and takes time, and for a patient needing many spring packages, the weight might cause discomfort.
The resilient devices described above also have the major disadvantage in common, that their resilient elements consist of mechanical springs. The force of these mechanical springs will vary substantially with their compression. This is because their force is a linear function of the change in compression, and will increase or decrease by a more or less high constant factor (the spring constant). This makes the device very sensitive to position changes, which means that if the patient puts the device on in a manner such that the distance between the belts will vary somewhat from time to time, the traction force will vary substantially. The same applies when the patient bends, e.g. sideways. The force will then increase substantially on one side of the body whilst decreasing in a corresponding degree on the other. As a suitable traction force for each patient is determined by a doctor and/or a therapist, etc., and the effect of the treatment may be highly dependent on maintaining the appropriate force, then this weakness is obvious, as a change in force is very unsuitable for certain ailments.
The two devices according to U.S. Pat. Nos. 4,721,102 and 3,548,817 have, due to the short springs, the same disadvantage regarding the characteristics of the mechanical springs as mentioned above, but to a still higher degree.
U.S. Pat. No. 5,405,313 shows a rigid fixing harness having no flexible elements at all. The upper portion of the chest-shoulder harness is, on the backside, anchored in the lower pelvic harness and will rather cause a contraction of the spinal column, whilst the rigid adjustable struts running between the rear side of a pelvic belt and the front side of the arm pits are creating a tractional effect. The sum of this is mainly that the harness will hold the spinal column fixed, whereas the shoulders are rather exposed to a rearwards turning force. There is no possibility of active self-traction through using the abdominal muscles.
SUMMARY OF THE INVENTION
Consequently, there exists a need for improving the existing devices for traction and relief of the spinal column, so as to improve the function and reduce the force variations, to enable traction on the largest possible section of the spinal column, to make the device simpler to adjust and to put on, whilst needing less precision in order to achieve the correct traction force and being lighter and more comfortable to carry in a standing, sitting as well as a lying position. There is also a need for a device that is sufficiently comfortable to carry, to enable its use for preventive relief of the spinal column of persons having back problems and working in vibrating vehicles, such as dumpers and excavators. Furthermore, there is a need for a device allowing the bearer to actively stretch his spinal column in a simple way (for the purposes of this description called self-traction).
The object of the invention is thus to provide a traction device for the human spinal column which fulfils the aforementioned requirements.
This is achieved, according to the invention, by a portable traction device, the characteristics of which are defined by the accompanying patent claims, whereby the dependent claims describe preferred embodiment forms.
REFERENCES:
patent: 2835247 (1958-05-01), Stabholc
patent: 2886031 (1959-05-01), Robbins
patent: 3548817 (1970-12-01), Mittasch
patent: 4622957 (1986-11-01), Curlee
patent: 4715362 (1987-12-01), Scott
patent: 4721102 (1988-01-01), Pethybridge
patent: 5405313 (1995-04-01), Albin
patent: 5462518 (1995-10-01), Hatley et al.
Brown Michael A.
Fasth Rolf
Fasth Law Offices
Fisheries Management and Supply Co A.B.
LandOfFree
Device for stationary and/or ambulant traction of the spinal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for stationary and/or ambulant traction of the spinal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for stationary and/or ambulant traction of the spinal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2535785