Device for setting a defined electric potential on a ferrite...

Stock material or miscellaneous articles – Composite – Of inorganic material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S617000, C428S618000, C428S681000, C336S08400R, C336S08400R, C336S08400R

Reexamination Certificate

active

06746785

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a device for setting a defined electric potential on a ferrite core of an inductive component and/or for reducing the damping of the inductive component from losses induced by its magnetic field, wherein a metal layer is provided on the ferrite core.
Problems can arise in inductive components both because of an undefined electric potential on the ferrite core of the component and by damping of the component by losses, for example eddy-current losses, induced by its magnetic field. This is the case, for example, with inductors for the tuned circuits of inductive proximity switches.
Inductive proximity switches or sensors of this type contain, as active element, an inductive system consisting of an electrical winding and a ferrite core, implemented as a pot-type core. The magnetic fields produced by the electric current flowing in the winding is guided and directed by the pot-type core in such a way that it emerges from the core on only one side. If there is an object made of electrically conductive or magnetically permeable material close to the exit side, i.e. the active face of the proximity switch, then the magnetic field becomes deformed. An electrical switching signal of the proximity switch is derived from the deformation or influence.
In order for the proximity switch to operate properly, it is essential for the ferrite core to be at a defined electric potential. Due to the fact that ferrites exhibit poor electrical conductivity (which is per se desirable as regards losses in the core), conventional methods for defining the potential, for example soldering electrical conductors to it, are out of the question.
An attempt has been made in the art to overcome the problem by bringing a piece of metal into contact under pressure with the& surface of the ferrite core. However, this is disadvantageous in that, because of differing surface properties of ferrites, undefined surface resistances occur. The scatter in the contact resistance between the ferrite and the conductor is in this case relatively great. A standard deviation of approximately 1.8 k&OHgr; can occur.
A further problem with inductive proximity switches arises when a metal tube, in particular a stainless steel tube, is used as the housing. The eddy currents induced in a tube housing of this type cause premature damping of the coil system of the proximity switch and thereby reduce the maximum switching range. In order to reduce the damping of the coil system which these eddy currents cause, a copper ring may be arranged between the coil system and the housing. As a result, the eddy-current losses are substantially reduced because the electrical conductivity of copper is orders of magnitude higher than that of the housing material customarily used (stainless steel). The premature damping of the coil system is thereby lowered and, as a consequence of this, the possible switching range of the proximity switch is increased. Reference may be had, with regard to that type of inductive proximity switch design, to “Sensoren in der Automatisie-rungstechnik” [Sensors in Automation Technology] by G. Schnell, Vieweg Verlag, Braunschweig, Germany 1991, pp. 5-10.
In those systems, however, the disadvantage arises that the relatively large tolerances of the ferrite (about 2 to 3%) always lead to a gap between the metal ring and the ferrite wall. As a result, undesireable leakage flux is caused and the switching range is reduced. Since it is required that the metal ring have a particular minimum thickness, the overall dimensions of the proximity switch are furthermore increased, in view of the above-mentioned tolerances of the ferrite.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method of setting the electrical potential and/or of reducing the damping of inductive components, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type.
With the foregoing and other objects in view there is provided, in accordance with the invention, a ferrite core assembly of an inductive component with a defined electric potential and reduced damping behavior, comprising:
a ferrite core of an inductive component;
a metal layer disposed on the ferrite core; and
an electrically conductive adhesive bonding the metal layer to the ferrite core, the adhesive being selected so as to adhere and be thermally stable within an operating temperature range of the inductive component.
In accordance with an added feature of the invention, the metal layer is a copper layer.
In a first embodiment of the invention, the metal layer is a metal platelet and, in particular, a circular copper platelet. Other shapes are possible as well such as, for instance, rectangular platelets and the like.
In a second embodiment of the invention, the metal layer is a foil bonded to the ferrite core. The foil is preferably formed of copper as well.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a device for setting a defined electric potential on a ferrite core of an inductive component and/or for reducing damping of the inductive component by losses induced by its magnetic field, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.


REFERENCES:
patent: 3835370 (1974-09-01), Kaiserserth et al.
patent: 4127110 (1978-11-01), Bullara
patent: 5153540 (1992-10-01), Gliha
patent: 5182427 (1993-01-01), McGaffigan
patent: 5312674 (1994-05-01), Haertling
patent: 5650759 (1997-07-01), Hittman et al.
patent: 5653841 (1997-08-01), Krishnamurthy et al.
patent: 5776275 (1998-07-01), Krishnamurthy et al.
patent: 5825901 (1998-10-01), Hisey
patent: 2247017 (1974-03-01), None
patent: 8810709.4 (1988-11-01), None
patent: 2346679 (1977-10-01), None
Japanese Patent Abstract No. 61170010 (Motoyasu), dated Jul. 31, 1986.
“Induktive Sensoren”, G. Schnell, Vieweg Verlag, Braunschweig, Germany, 1991, pp. 5-14 (No Month).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for setting a defined electric potential on a ferrite... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for setting a defined electric potential on a ferrite..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for setting a defined electric potential on a ferrite... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3339112

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.