Device for separating two non-mixable liquids with different...

Liquid purification or separation – Structural installation – Closed circulating system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S171000, C210S255000, C210S262000, C210S265000, C210S416500, C210S521000, C210S532100, C210S540000, C210SDIG005

Reexamination Certificate

active

06495033

ABSTRACT:

The present invention concerns a device for separating two non-mixable liquids with different specific gravities such as oil and water, in particular for separating oil from the condensate of a compressor installation, which device contains a first separation tank with an overflow for each of the liquids to be separated, a coalescence filter whose inlet is connected via a pipe to the overflow of the first separation tank for the liquid with the highest specific gravity and a second separation tank which is connected to the outlet of the coalescence filter.
Such devices are used in installations with oil-lubricated compressors and related appliances such as compressed air dryers, pressure vessels and filters, and they are erected after the condensate separators of these appliances.
The pre-separator or separation tank operates on the basis of the difference of the specific gravities. In this separation tank, the floating heavy oil emulsion and free oil are separated. The coalescence filter contains a filter medium through which flows the condensate and in which the fine, emulgated oil drops glue together into larger drops which are separated from the water in a second separation tank connected onto it as a result of the difference in specific gravity.
In some cases, namely when only a very restricted residual oil content is admitted, also an active carbon filter will be erected after the separation tank in which the oil remaining after the coalescence filter is adsorbed on the surface of the active carbon.
Such devices are known operating on atmospheric pressure. They are characterised by a coalescence filter which is little efficient, so that the emphasis lies mainly on the pre-separation and the active carbon filter. As the coalescence filter is little efficient, the active carbon filter is rapidly saturated and has to be replaced soon.
That is why, in order to reduce the residual oil which must be adsorbed on the active carbon, the pre-separation of the oil must be as efficient as possible. Therefore, the first separator is built relatively large, so that the condensate remains as long as possible in this separator.
Also the amount of active carbon is selected relatively large, so as to keep as much time as possible between the replacements.
By pressing the condensate under pressure through the coalescence filter, its efficiency can be considerably improved. Especially in the case of oil/water emulsions with a relatively large viscosity, a relatively high pressure is required.
Compact and efficient coalescence filters are known which make it absolutely necessary to press the condensate through under pressure. They are characterised in that they are built up of several layers of filter paper wrapped around a core.
In the direction of flow of the liquid through the filter material, the filter first contains a number of layers which collect dust particles floating in the liquid to be treated, followed by a number of layers of another filter medium which has to make sure that very fine oil drops are transformed into larger oil drops. Such a filter medium usually consists of a water-repellent material which has a good affinity for oil. The oil drops stick to the fibres of this material and collide with oil drops floating in the liquid. With each collision, the oil drop further grows until it is large enough to be carried along by the liquid flow against the adhesive force of the filter material.
It is natural to use the pressure of the compressor installation for this, and devices, are known in which the device for separating oil from the condensate is coupled directly to the condensate separators under pressure of the compressor installation.
In the case of such a known direct link, the compressor installation and the device may have a reciprocal influence on one another, which may be disadvantageous.
When for example a condensate separator lets compressed air through, this compressed air ends up in the device, so that separating oil becomes impossible.
When the separation device does not work flawlessly, for example because the coalescence filter is obstructed, the condensate separators can no longer discharge the condensate, so that the compressed air supplied by the installation will be no longer dry.
U.S. Pat. No. 4,608,160 describes a device for separating oil from water with a separation tank, followed by a coalescence filter, whereby a pump is provided between both which presses the water from the separation tank under pressure through the coalescence filter.
When such a device is used for separating oil from the condensate of a compressor installation, the device can be disconnected from the installation, and thus the condensate can be collected in a collector under atmospheric pressure and nevertheless be pumped under pressure through the coalescence filter. However, a pump must be added to such a device, which requires current and thus makes the construction relatively expensive and voluminous.
The invention aims a device for separating two non-mixable liquids with different specific gravities which does not have the above-mentioned disadvantages, which device can thus be made relatively compact and is relatively inexpensive, and with which, without a pump or other external means for supplying pressure being required, can be obtained a very efficient operation of the coalescence filter, so that the active carbon filter can be omitted or, in those cases where only an extremely low residual oil content is admitted, a possible active carbon filter will not be rapidly saturated.
In particular, the invention aims such a device which is particularly suitable for separating oil from the condensate of a compressor installation without having to be linked directly to this installation.
This aim is reached according to the invention in that the overflow onto which the coalescence filter is connected is situated higher than the inlet of the coalescence filter with a difference in height H
1
which is such that the liquid mass in the pipe between the first separation tank and the coalescence filter provides for the necessary pressure to bridge the pressure drop in the coalescence filter and the counterpressure of the liquid in the second separation tank. DE 1.517.648 A discloses a device for separating oil and water. This device comprises two superposed chambers wherein filter element from synthetic foam with open cells are mounted.
The mixture of water and oil is pumped under pressure through a first filter in the upper chamber, flows then through an annular filter adjacent to the first filter. Oil is collected at the top of the upper chamber and pressed out of this chamber through a conduct.
The liquid with the remaining oil, passed through the second filter, flows over an overflow in the a space of the lower chamber situated around a third, annular filter. The space within this annular filer is closed at the top and inside this space is mounted a filter cartridge. The liquid is pressed through this cartridge from top to bottom and evacuated at the bottom of the lower chamber.
The oil separated from the water in the annular filter is collected at the top of said space and pressed out through a vertical conduct traversing also the upper chamber.
Preferably, the overflow for the liquid with the highest specific gravity of the first separation tank, even with a difference in height H
2
, is situated higher than the overflow for the liquid with the highest specific gravity in the second separation tank.
The above-mentioned difference in height H
2
, i.e. the height of the liquid column between the overflow for the liquid with the highest specific gravity, for example water, of the first separation tank and the overflow for the liquid with the highest specific gravity of the second separation tank, is then situated for example between several tens and hundreds of millimeters.
Of course, the pressure drop in the coalescence filter, which depends among others of the flow rate and the surface of the filter medium therein, is kept as low as possible.
To this end, also the first separati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for separating two non-mixable liquids with different... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for separating two non-mixable liquids with different..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for separating two non-mixable liquids with different... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2993598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.