Device for securing spinal rods

Surgery – Instruments – Orthopedic instrumentation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S060000

Reexamination Certificate

active

06565565

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The subject disclosure relates to implantable spinal stabilization systems for surgical treatment of spinal disorders, and more particularly, to a device for connecting cylindrical spinal rods of a spinal stabilization system to the spine.
2. Background of the Related Art
The spinal column is a complex system of bones and connective tissue which protects critical elements of the nervous system. Despite these complexities, the spine is a highly flexible structure, capable of a high degree of curvature and twist through a wide range of motion. Trauma or developmental irregularities can result in spinal pathologies which limit this range of motion.
For many years, orthopedic surgeons have attempted to correct spinal irregularities and restore stability to traumatized areas of the spine through immobilization. Over the past ten years, spinal implant systems have been developed to achieve immobilization. Examples of such systems are disclosed in U.S. Pat. Nos. 5,102,412 and 5,181,917 to Rogozinski. Such systems often include spinal instrumentation having connective structures such as elongated rods which are placed on opposite sides of the portion of the spinal column intended to be immobilized. Screws and hooks are commonly utilized to facilitate segmental attachment of such connective structures to the posterior surfaces of the spinal laminae, through the pedicles, and into the vertebral bodies. These components provide the necessary stability both in tension and compression to achieve immobilization.
Various fastening mechanisms have been provided in the prior art to facilitate securement of screws and hooks to the connective structures of a spinal stabilization system. For example, U.S. Pat. No. 5,257,993 to Asher discloses an apparatus for use in retaining a spinal hook on an elongated spinal rod. The apparatus includes a body extending upwardly from a hook portion and having an open ended recess for receiving a spinal rod and an end cap engageable with the body to close the recess. A set screw is disposed in the center of the end cap to clamp the rod in the recess of the body. The end cap and body are interconnectable by different types of connectors including a bayonet connector, a linear cam connector or a threaded connector. Other examples of fastening mechanism for facilitating attachment of screws and hooks to the connective structures of a spinal stabilization system are disclosed in U.S. Pat. No. 5,437,669 to Yuan et al. and U.S. Pat. No. 5,437,670 to Sherman et al.
In each of these prior art examples, threaded fasteners are used to facilitate securement of the connector to the spinal rod. Yet it is well known that threaded fasteners can become loosened under the influence of cyclically applied loads commonly encountered by the spinal column. Furthermore, during assembly, excessive torque applied to a threaded fastener can cause damage to the fastener as well as to the connective device with which it is associated.
It would be beneficial to provide a more reliable and effective mechanism for facilitating the attachment of screws, hooks and clamps to the connective structures of a spinal stabilization system.
SUMMARY OF THE DISCLOSURE
The subject disclosure is directed to a device for securing a spinal rod to a fixation device such as a pedicle screw or a lamina hook. The device disclosed herein includes a head portion configured to receive a spinal rod, a locking cap configured to engage the head portion and the spinal rod upon rotation of the locking cap relative to the head portion to secure the position of the head portion relative to the spinal rod, and a fastener portion extending from the head portion and configured to engage the spine. The fastener portion of the device can be in the form of a screw, hook or clamp, or any other configuration known in the art.
The head portion of the device has a channel extending therethrough for receiving a spinal rod and the channel is preferably bounded by opposed side walls each having an arcuate engagement slot defined therein. The locking cap preferably has opposed arcuate engagement flanges configured for reception in the opposed arcuate engagement slots of the head portion upon rotation of the locking cap relative to the head portion. Preferably, the opposed engagement slots are each defined in part by inclined slot surfaces, with the angle of the inclined surface of one engagement slot being opposite that of the opposed engagement slot. Similarly, the opposed engagement flanges are preferably each defined in part by inclined flange surfaces, with the angle of the inclined surface of one engagement flange being opposite that of the opposed engagement flange. The head portion also preferably includes structure for interacting with the locking cap to prevent the opposed side walls of the head portion from expanding radially outwardly when the arcuate flanges are engaged in the arcuate slots.
Preferably, the locking cap of the device is configured for rotation between an initial position in which the arcuate engagement flanges are 90° out of phase with the arcuate engagement slots, an intermediate position in which the arcuate engagement flanges are 45° out of phase with the arcuate engagement slots, and a locked position in which the arcuate engagement flanges are in phase and intimately engaged with the arcuate engagement slots.
In this regard, the bottom surface of the locking cap preferably includes a first recess oriented to accommodate a spinal rod when the locking cap is in an initial unlocked position, a second recesses which intersects the first recess at a first angle to accommodate a spinal rod when the locking cap is in an intermediate position, and a third recess which intersects the elongate recess at a second angle to accommodate a spinal rod when the locking cap is in a final locked position. In accordance with a preferred embodiment of the subject disclosure, the first recess is an elongate recess, the second recess is a transverse recess which intersects the elongate recess at a 45° angle, and the third recess is an orthogonal recess which intersects the elongate recess at a 90° angle.
The subject disclosure is also directed to a device for securing a spinal rod to the spine which comprises a head portion having a channel extending therethrough configured to receive a spinal rod, a locking cap including a first portion configured to engage an interior surface of the head portion and a second portion configured to engage an exterior surface of a spinal rod received by the channel to secure the position of the head portion relative to the spinal rod, and a fastener portion depending from the head portion and configured to engage the spine.
Preferably, the locking cap is a two-piece structure which includes an upper portion configured to engage an interior surface of the head portion and a lower portion configured to engage an exterior surface of the spinal rod to secure the position of the head portion relative to the spinal rod upon rotation of the upper portion relative to the lower portion and the head portion. The upper portion of the locking cap includes a bottom surface having an axial reception bore defined therein and the lower portion of the locking cap includes an upper surface having an axial post extending therefrom configured to engage the axial reception bore in the bottom surface of the upper portion of the locking cap and facilitate the relative rotation of the two parts. The upper portion further includes opposed arcuate engagement flanges configured for cammed engagement in correspondingly configured opposed arcuate engagement slots formed in the opposed side walls of the head portion upon rotation of the upper portion relative to the lower portion. The lower portion further includes a bottom surface having an elongated hemi-cylindrical recess that is oriented to accommodate a spinal rod extending through the channel in the head portion.
In accordance with one aspect of the subject disclosure, the fastener portion is formed monolithic w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for securing spinal rods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for securing spinal rods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for securing spinal rods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3036658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.