Device for removing toxins from blood or plasma

Surgery – Devices transferring fluids from within one area of body to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S004010, C604S005040, C604S006090, C604S019000, C428S394000, C428S400000, C428S403000, C428S500000, C428S515000, C210S645000, C210S506000, C210S510100, C210S903000, C210S905000

Reexamination Certificate

active

06423024

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to adsorbents for removing toxicants from blood or plasma, and also for a method of producing such adsorbents.
Conventional procedures for the purification of blood extracorporeally include membrane techniques (hemodialysis, plasmapheresis, ultrafiltration), sorption techniques (hemoperfusion, plasma perfusion) and combinations of these methods. Hemodialysis, ultrafiltration and plasma pheresis separate compounds according to their size and do not selectively remove specified components. Sorption techniques, on the contrary, can be both selective and non-selective.
Hemoperfusion involves the passage of the contaminated blood over a solid surface of a detoxicant particulate mass that separates the contaminant by sorption or by ion exchange. Another procedure, plasma perfusion, involves separation of blood cells prior to contacting plasma with the adsorbent. In any case, treated blood, or both cells and treated plasma, have to be returned to the patient's blood circulation system.
There are cases where the toxic components to be removed from blood are well established. In these cases, selective adsorbents can be employed which incorporate ligands specially designed to attract and bind the target species. Exemplary of potential applications of selective perfusion systems are: (1) the removal of autoimmune antibodies, immunoglobulins and immune complexes using adsorbents such as Protein-A; (2) removal of circulating toxins and tumor antigens (e.g., a-fetoprotein associated with hepatic cancer, carcinoembrionic antigen associated with various carcinomas, thioesterase or cytokeratins associated with breast cancer, and the like) using adsorbents such as immobilized monoclonal antibodies and specific immobilized ligands; (3) removal of protein bound toxins and drugs (e.g., in the case of psychotomimetic or narcotic drug overdose) based on the antigenic properties of these protein conjugates; (4) procedures using live cells in the plasma chamber in the place of adsorbents such as islet cells or liver tissue fragments for the treatment of diabetes, hepatocytes for the treatment of hepatic failure and the like; (5) selective removal of plasma components using immobilized enzymes as adsorbents; (6) removal of cholesterol [low density lipoproteins (LDL)] using adsorbents specific to LDL; (7) removal of excess phosphate on the MgO/TiO complex deposited on active carbons; (8) adsorption of triglycerides, cholesterol and fatty acids on hydrophobic polymer materials; (9) removal of human immunodeficiency virus using calcinated hydroxyapatite-silica-alumina adsorbing materials; (10) absorbing free hemoglobin from plasma on polyphenylalanine, polyalkylene-oxide or mineral or polymeric porous materials bearing groups of tyramine, tyrosine, phenylalanine and aminophenol on the surface.
Not less frequent are cases where several toxic compounds appear in blood simultaneously, often unidentified or even unknown. These are mainly toxins of low or middle-range molecular weights. Here, selective immunoadsorbents can not be prepared in a reasonable period of time and non-selective adsorbents are needed which readily adsorb a variety of relatively small toxic molecules. Preferential adsorption is mainly caused by smaller polarity of these toxins as compared to that of natural amino acids and saccharides which are useful conventional small components of normal blood. Hydrophobic adsorbing materials, in particular activated carbon, are used as the non-selective adsorbents in these cases.
Hemoperfusion and plasma perfusion on non-specific activated carbon-type sorbents was shown to be helpful in treatment of schizophrenia (Kinney, U.S. Pat. No. 4,300,551, 1981), pulmonary hypertension (SU 1507-397-A, 1989), multiple sclerosis (SU 1466-754-A, 1989), treatment of rhesus-conflict in obstetrics (SU 1533-697-A, 1989), for detoxication of organism of patients who have undergone extensive surgery (SU 1487-909-A, 1989).
A technique for cancer treatment is described by Bodden (U.S. Pat. No. 5,069,662, December 1991), by which high concentrations of anti-cancer agents can be perfused through a body organ containing a tumor and then removed from the organ with effluent blood. The contaminated blood is then transported to an extracorporeal circuit, purified from contaminations and returned to the body. This permits safe infusion of greater than usual concentrations of chemotherapeutic agents and delivering lethal doses of the agents to the tumor while preventing toxic levels of the agents from entering the body's general circulation. The process is applicable to the treatment of a number of tumors such as those of kidney, pancreas, bladder, pelvis and, in particular, the liver. Illustrative of suitable chemotherapeutic agents for use in the practice are Adriamycin (doxorubicin), fluorinated pyrimidines (5-fluorouracyl 5-FU or floxuridine FURD), cisplatin, Mytomycin C, cyclophosphamide, methotrexate, vincristine, Bleomycin, FAMT, and any other anti-cancer agent. Blood detoxication most effectively can be achieved by hemoperfusion through a cartridge with a non-specific sorbent, for example, activated carbon, able to clear the blood from the above antineoplastic agents.
In a hemoperfusion system, whole blood comes into direct contact with the sorbent, such as active carbon, which leads to two kinds of serious problems: first, fine carbon particles tend to be released into the blood stream to become emboli in blood vessels and organs such as lungs, spleen and kidneys; second, the biological defense system of blood may be activated and react in several ways: the blood may coagulate to form a clot, or thrombus, the immune system may respond unfavorably, and white blood cells may act to encapsulate the artificial device.
Therefore, many attempts have been done to prevent release of fines and to enhance the biocompatibility of the sorbents. Clark (U.S. Pat. No. 4,048,064, September 1977) describes formation of a semipermeable polymeric coating on the carbon particles by polymerization of various hydrophilic monomers, in particular hydroxyethylmethacrylate (HEMA) and acrylamide. Moreover, he includes heparin into the coating polymer, in order to minimize complement activation and aggregation of platelets. Nakashima, et al. (U.S. Pat. No. 4,171,283, October 1979) suggests to add an epoxy moiety containing comonomer, which allows post-crosslinking of the polymeric coat formed, thus enhancing the mechanical stability of the coating. However, thin hydrophilic polymeric coatings were 5 found to “fall apart”, whereas thick coatings retarded diffusion and deteriorated sorption properties of the carbon.
Maxid discloses (U.S. Pat. No. 5,149,425, September 1992; U.S. Pat. No. 5,420,601, August 1993), thin integral membranes on the surface of the adsorbent can be better prepared from hydrophobic, insoluble in water polymer, in turn coated by a second, but water-soluble polymer.
Alternatively, activated carbon was coated with a polyelectrolyte complex prepared from a polycation (DEAE-cellulose) and heparin and precipitated on the surface of carbon beads (Valueva, et al., SU 844-569, 1981).
Polymeric hydrophobic materials may serve as non-selective adsorbents. Endotoxins were observed to adsorb on porous polypropylene and polyethylene (Harris, U.S. Pat. No. 4,059,512, November 1977). Macroporous styrene-divinylbenzene copolymers were shown to be useful for blood detoxication from barbiturates and glutethimides (Kunin, et al., U.S. Pat. No. 3,794,584, February 1974).
Polystyrene polymers prepared by an extensive crosslinking of polystyrene chains with rigid bi-functional cross-linking reagents such as dichlorodimethyl ether are taught by U.S. Pat. No. 5,773,384.
While polystyrene-type adsorbents are useful to adsorb small and middle-size organic molecules, the hemocompatibility of the material required additional improvement.
An effort to render such adsorbents hemocompatible is taught in WO 97/35660, or U.S. Pat. No. 5,773,384.
The foregoing efforts are not effic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for removing toxins from blood or plasma does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for removing toxins from blood or plasma, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for removing toxins from blood or plasma will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904519

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.