Surgery – Diagnostic testing – Cardiovascular
Reexamination Certificate
2000-04-26
2003-12-02
Jastrzab, Jeffrey R. (Department: 3762)
Surgery
Diagnostic testing
Cardiovascular
Reexamination Certificate
active
06658284
ABSTRACT:
BACKGROUND ART
The present invention relates to a method and apparatus for reducing signal noise in a fetal ECG signal, typically one obtained by using a unipolar ECG lead configuration which detects a predominant T wave vector whilst avoiding changes in ECG waveform shape due to fetal rotation through the birth canal.
Fetal surveillance during labour is standard clinical practice. The purpose is to identify abnormal events and fetal oxygen deficiency in particular. Since its introduction in the sixties it has been evident that electronic fetal monitoring by fetal heart rate analysis alone does not provide all the information required for an optimal identification of a fetus suffering from lack of oxygen.
During the last 20 years work has been ongoing to clarify what fetal signals could be made use of to provide additional information. Since the early seventies, waveform analysis of the fetal electrocardiogram has been studied from both physiological, signal processing and clinical aspects (Rosen KG: Fetal ECG waveform analysis in labour. Fetal monitoring. Physiology and techniques of antenatal and intrapartum assessment. ad. Spencer JAD). Castle House Publications. pp. 184-187,1989). It was found that the ST interval and T-wave amplitude were of particular interest.
FIG. 1
depicts two consecutive heart beats with the different ECG components of interest during foetal surveillance being identified. It has been found that changes in the ST interval of the Fetal Electro CardioGram (ECG) are part of the components that reflect the stress of the fetal heart during the labour. Basically, the changes that appear in the ST interval due to lack of oxygen, can be divided into 3 classes:
1. ST rise with increased ST segment and T wave amplitude;
2. Appearance of so called biphasic ST changes, with an ST segment with a negative slope;
3. Appearance of negative T waves.
These discoveries have been applied in a clinical trial in which the ST-waveform (ie. the ST segment plus the T wave) of the fetal electrocardiogram was shown to provide more useful information than the mere detection of RR-intervals (fetal heart rate) (Westgate J, M Harris, J S H Curnow, R R Greene: Plymouth randomised trial of cardiotocogram only versus ST waveform plus cardiotocogram for intrapartum monitoring; 2400 cases. Am J Obstet Gynaecol 169(1993)1151).
Several problems regarding the fetal ECG-signal quality have been identified over the years. Clearly, it is a prerequisite to be able to detect the ST waveform, and so one of the main requirements for ST-waveform analysis of the fetal electrocardiogram is a fetal ECG lead configuration that is consistent and allows the identification of the T vector during labour.
The conventional ECG level configuration used for fetal monitoring is the bipolar fetal ECG lead configuration. Here, both exploring electrodes are located close to each other on the presenting part of the fetal body, ie. the head or buttock. As a consequence of the location of the electrodes, there is a maximum sensitivity to ECG waveform changes with a main vectorial distribution in the horizontal plane of the fetus. However, experimental data have shown a maximal representation of T wave vector along the longitudinal axis of the fetus. Thus, the standard fetal ECG lead, well suited when only using the R wave for fetal heart rate detection, will not enable the accurate detection of changes in T wave amplitude.
This can only be done by constructing an ECG lead that is sensitive to ECG waveform changes appearing in the longitudinal axis of the fetus. It is known from the literature that the use of a unipolar fetal ECG lead configuration enables the detection of the main T-wave vector more accurately then the standard bipolar ECG lead configuration (Lindecrantz K, Lilja H, Widmark C, Rosen KG: The fetal ECG during labour. A suggested standard. J. Biomed. Eng. 1988; 10: 351-353). In this configuration, one of the exploring electrodes is located well away from the fetus, e.g. on the maternal skin. The maternal thigh has been found to be a suitable place. The other exploring electrode is the standard scalp electrode needle placed under the skin of the presenting fetal part.
A further problem is the existence of signal noise which is far more significant when the S-T waveform is being studied than is the case with conventional fetal ECG monitoring. An illustration of progressive changes in the ST segment of the foetal ECG recorded during labour is presented in
FIGS. 2
a-c
. The ECG baseline as indicated by the present invention is depicted as well. The appearance of biphasic changes in the ST segment follows a pattern, which is exemplified in
FIGS. 2
a-c
. This is a sequential recording showing 30-beat ECG averages. As seen in
FIGS. 2
a-c
, the ST segments are classified in a 3-level scale that reflects the relation between the negative slope of the ST segment compared to the baseline of the ECG. As will be appreciated, to be able to perform this type of analysis, a very high signal quality regarding low frequency noise is required.
Although the unipolar fetal ECG electrode configuration discussed above enables the T vector to be identified, a signal noise problem is generated at the same time. The maternal skin electrode is sensitive to maternal movements causing both low frequency (movement artifacts) and high frequency (muscular activity) noise. Another source of noise is the interference from mains frequencies.
Thus, the sources of signal noise may be summarised as:
A. High frequency components related to muscle activity.
B. Interference from mains frequencies.
C. Low frequency noise largely generated by fetal and maternal movements
Any system for assessment of the ST-waveform of the fetal electrocardiogram has to reduce the interference from these potential sources of signal noise, but obviously, any techniques applied to reduce signal noise should not significantly interfere with the ST waveform. Furthermore, the signal processing should be done continuously as the state of oxygen delivery to the fetus can change from one minute to another and any delay in the presentation of ECG-waveform data would be disadvantageous.
The technique used in the Plymouth trial (westgate et al, 1993) used analogue filtering signal processing undoubtedly with some success. However, there were limitations to what can be achieved. The fetal scalp ECG signal amplitude (QRS complex) varies normally between 100 and 400 &mgr;V but the T wave is normally only {fraction (1/10)} of an amplitude of the peak signal and so great care has to be taken not to interfere with this low amplitude part of the signal. The use of analogue high pass filters to reduce low frequency (ie. below 1 Hz) baseline shifts carries the risk of markedly affecting the T wave amplitude and guidelines instituted by the American Heart Association recommend a low frequency cut-off of only 0.05 Hz (Electrocardiography recommendations for the standardization of leads and of specifications for instruments in ECG/VCG circulation. American Heart Association Committee, 1975, Pp 1-25). These guidelines were followed in the Plymouth trial.
As a consequence, the prior art analogue filtering techniques will, to only a very limited extent reduce low frequency noise generated by electrode movements and the data interpretation has therefore been limited to more robust changes. There is therefore a need to improve the quality of the fetal electrocardiogram to enable continuous and detailed assessment of ST-waveform changes during labour.
SUMMARY OF THE INVENTION
According to the present invention there is provided a method of reducing noise in a fetal ECG signal comprising connecting electrodes to the fetus and the maternal skin in a unipolar configuration and feeding the signal detected by said electrodes through a first high pass filter, the cut-off frequency of the first high pass filter being between 0.2 and 2.7 Hz.
The invention also provides an apparatus for obtaining a fetal ECG signal comprising exploring electrodes for connection to the fetus and the maternal ski
Rosen Karl G.
Samuelsson Arne
Jastrzab Jeffrey R.
McCormick Paulding & Huber LLP
Neoventa Medical AB
Oropeza Frances P.
LandOfFree
Device for reducing signal noise in a fetal ECG signal does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for reducing signal noise in a fetal ECG signal, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for reducing signal noise in a fetal ECG signal will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3112649