Music – Instruments – Electrical musical tone generation
Reexamination Certificate
2011-03-29
2011-03-29
Fletcher, Marlon T (Department: 2832)
Music
Instruments
Electrical musical tone generation
C084S622000, C084S625000, C084S659000, C084S660000, C084S662000, C084S737000
Reexamination Certificate
active
07915515
ABSTRACT:
A device for digitally producing signals representative of sounds having a sonority simulating that of an instrument with keyboard and strings that are linked to a sounding board of the instrument, these sounds each corresponding to a note of the instrument. The device produces at least one signal representative of a keyboard and stringed instrument sound on the basis of at least one trigger signal and parameters, termed physical parameters. The physical parameters include at least one parameter, the so-called sounding-board parameter, characteristic of a sounding board of a keyboard and stringed instrument to be simulated. Furthermore, the physical parameters according to the invention comprise at least one parameter, termed the string(s) parameter, characteristic of at least one string of the keyboard and stringed instrument to be simulated. The device includes elements (9, 10, 11, 33) for inputting at least one physical parameter.
REFERENCES:
patent: 5264658 (1993-11-01), Umeyama et al.
patent: 6647359 (2003-11-01), Verplank et al.
Julien Bensa, “Analyse et synthèse de sons de piano par modèles physiques et de signaux”, These de Doctorat, May 23, 2003, pp. 1-183, Universite de la Mediterranee, Marseille, France.
N. Giordano et al., “Physical Modeling of the Piano”, EURASIP Journal on Applied Signal Processing, Jul. 2004, pp. 926-933, vol. 2004, No. 7, Hindawi Publishing Corporation, USA.
Balézs Bank et al., “Physically Informed Signal Processing Methods for Piano Sound Synthesis: A Research Overview”, EURASIP Journal on Applied Signal Processing, Oct. 2003, pp. 941-952, vol. 2003, No. 10, Hindawi Publishing Corporation, USA.
Rudolf Rabenstein et al., “Digital sound synthesis of string instruments with the functional transformation method”, Aug. 2003, pp. 1673-1688, vol. 83, No. 8, Signal Processing, Amsterdam, The Netherlands.
Julien Bensa et al, “The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides”, Journal of the Acoustical Society of America, Aug. 2003, pp. 1095-1107, vol. 114, No. 2, AIP/Acoustical Society of America, Melville, New York, USA.
Scott A. Van Duyne et al., “Developments for the Commuted Piano”, Proceedings of the International Computer Music Conference, Sep. 1995, pp. 319-326, ICMC.
N. Giordano, “Mechanical impedance of a piano soundboard”, Journal of the Acoustical Society of America, Apr. 1998, pp. 2128-2133, vol. 103, No. 4, Acoustical Society of America through AIP, USA.
N. Giordano, “Simple model of a piano soundboard”, Journal of the Acoustical Society of America, Aug. 1997, pp. 1159-1168, vol. 102, No. 2, Acoustical Society of America through AIP, USA.
Guy E. Garnett, “Modeling piano sound using Waveguide Digital Filtering Techniques”, ICMC Proceedings, 1987, pp. 89-95.
Philippe Guillaume, “Nonlinear Eigenproblems”, SIAM J. Matrix Anal. Appl., 1999, pp. 575-595, vol. 20, No. 3, Society for Industrial and Applied Mathematics.
Philippe Guillaume et al., “Solution to the Time-Harmonic Maxwell's Equations in a Waveguide; Use of Higher Order Derivatives for Solving the Discrete Problem”, SIAM J. Numer. Anal., Aug. 1997, pp. 1306-1330, vol. 34, No. 4, Society for Industrial and Applied Mathematics.
Jean-Daniel Beley et al., “Application de la méthode des dérivées d'ordre élevé à l'optimisation de structures”, Revue Européenne des Éléments Finis 5, 1996, pp. 537-567.
Ph. Guillaume et al., “Sensitivity computation and automatic differentiation”, Control and Cybernetics, 1996, pp. 831-865, vol. 25, No. 5.
Ph. Guillaume et al., “Computation of high order derivatives in optimal shape design”, Numerische Mathematik 67, 1994, pp. 231-250, Springer-Verlag.
Philippe Guillaume et al., “Calcul numérique des dérivées d'ordre supérieur en conception optimale de formes”, C. R. Acad. Sci. Paris, 1993, pp. 1091-1096, t. 316, Series I.
Philippe Guillaume et al., “Dérivées d'ordre supérieur en optimisation de domaines”, C. R. Acad. Sci. Paris, 1992, pp. 859-862, t. 315, Series I.
M. Masmoudi et al., “Application of Automatic Differentiation to Optimal Shape Design”, Advances in Structural Optimization, 1995, pp. 413-446, Kluwer Academic Publishers, The Netherlands.
Philippe Guillaume, “Nested multivariate Padé approximants”, Journal of Computational and Applied Mathematics 82, 1997, pp. 149-158.
Philippe Guillaume, “Convergence of the Nested Multivariate Padé Approximants”, Journal of Approximation Theory 94, Academic Press, Article No. AT983204, 1998, pp. 455-466, Elsevier Science B.V., Amsterdam, The Netherlands.
Philippe Guillaume et al., “Generalized Multivariate Padé Approximants”, Journal of Approximation Theory 95, 1998, pp. 203-214, Article No. AT973216, Academic Press.
Philippe Guillaume et al., “Multivariate Padé approximation”, Journal of Computational and Applied Mathematics 121, 2000, pp. 197-219, Elsevier Science B.V.
Fletcher Marlon T
Modartt
Young & Thompson
LandOfFree
Device for producing signals representative of sounds of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for producing signals representative of sounds of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for producing signals representative of sounds of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2723701