Device for orienting and achieving the optimal density of a...

Conveyors: power-driven – Conveyor system having a gravity conveyor section – With means to affect flow

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C198S550010, C414S789100

Reexamination Certificate

active

06290055

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a device and method for packaging; especially, it relates to a device and method for orienting and achieving the optimal density of a quantity of elongated objects such as french-fried potato strips.
2. Description of the Related Art
Several patents have dealt with orienting and achieving the optimal density of a quantity of elongated objects such as french-fried potato strips.
U.S. Pat. No. 4,843,795 of David Shroyer has the strips deposited on an essentially horizontal conveyor belt. This conveyor belt then transports the elongated objects to a vibrating alignment container that has a curved rear wall and an angled front wall for substantially aligning the elongated objects.
To the previous patent, U.S. Pat. No. 4,955,178 of David Shroyer basically adds a vibrating tube below the vibrating alignment container as a second portion of the alignment container. In the original portion of the alignment container, the elongated objects are vibrated while passing through the alignment container. In the tube, however, the elongated strips are retained while they are being vibrated.
Finally, U.S. Pat. No. 4,965,984 of Richard Farnsworth, Donald Deines, and Alvin Deines has the elongated objects deposited upon a cleated, inclined conveyor belt. On lines 12 through 14 of column 3, the patent asserts, “It is important to note that the conveyor belt should be configured at an acute angle . . . with respect to the vertical in order for the articles to be aligned on the conveyor flights.” (The cleats are termed “flights.”) In fact, however, the V-shaped space then created between the conveyor belt and the hopper which delivers the objects to the conveyor belt tends to result in breakage of fragile products such as french-fried potato strips. Moreover, elongated objects, having downward momentum as a result of the drop from the hopper to the conveyor belt, tend repeatedly to tumble end over end at the bottom of such an inclined conveyor because the elongated objects are much longer than the height of the flights; similarly, the upward momentum imparted by the inclined conveyor belt to the elongated objects often causes such objects to tumble end over end near the highest point of the inclined conveyor belt, i.e., where the elongated objects are discharged from the inclined conveyor belt.
SUMMARY OF THE INVENTION
The present invention uses a metering hopper to deposit a pre-weighed product charge upon a cleated conveyor belt.
The first portion of the cleated conveyor belt, i.e., that portion on the cleated conveyor belt upon which the pre-weighed product is deposited, is substantially horizontal. The conveyor belt is then vertically inclined throughout its middle portion. And the end portion of the conveyor belt is substantially horizontal.
Having the first portion of the cleated conveyor substantially horizontal precludes the creation of a V-shaped area between the hopper and the conveyor belt where fragile products could be broken. Also, the momentum which tends to cause elongated objects repeatedly to tumble end over end when such elongated objects are deposited upon an inclined conveyor belt is dissipated on the horizontal first portion of the present cleated conveyor belt before the conveyor belt begins its inclined middle portion; therefore, the elongated objects do not tend to tumble end over end as they begin the ascent up the incline. Similarly, the upward momentum generated by the incline is gradually dissipated as the conveyor belt approaches a substantially horizontal orientation near the end portion of the conveyor belt.
As the elongated objects proceeds up the incline, some objects will slough off and fall back down the cleated belt, leaving a small, regulated portion to exist within the space between successive flights. Each flight is preferably at least one inch in height, and the space between successive flights is preferably six inches.
At the tip of the end portion of the conveyor belt, the elongated objects fall from the conveyor belt into a vibrating product-orientation hopper. A further advantage of the substantially horizontal orientation of the end of the conveyor belt is that it minimizes the distance between the point of discharge of the elongated objects from the conveyor belt and the product-orientation hopper. This, of course, decreases the time gravitational acceleration can act upon the objects and, therefore, the speed which such objects attain. Moving slower, there is less chance for fragile object to be damaged.
Using the inclined belt to establish an even rate of discharge for the elongated objects tends to allow such elongated objects to bounce in the product-orientation hopper and to settle into a position of lowest energy, as dictated by the laws of entropy, before additional elongated objects fall and preclude the elongated object which dropped earlier from achieving its lowest potential energy. This tends to cause each elongated object to be oriented in a horizontal plane. Furthermore, by having the thickness of the product-orientation hopper narrower than the length of most of the elongated objects, the longitudinal axis of the elongated objects will tend, also, to be parallel to the sides of the product-orientation hopper.
Furthermore, the product-orientation hopper is vibrated; and this vibration tends to cause smaller elongated object to tend to move toward the bottom of the product-orientation hopper, which, in turn, creates a greater density of elongated objects in the vertical direction. Unfortunately, this also tends to cause the elongated objects to spread more and be less dense parallel to the sides of the product-orientation hopper in the horizontal direction. Therefore, horizontal squeezers are activated at each end of the product-orientation hopper to push the elongated objects away from the ends of the product-orientation hopper and, consequently, to optimize the density of the elongated object horizontally within the product-orientation hopper.


REFERENCES:
patent: 808067 (1905-12-01), Briggs
patent: 3498022 (1970-03-01), Godet
patent: 3774782 (1973-11-01), Lewis, Jr.
patent: 3902586 (1975-09-01), Hill
patent: 4087001 (1978-05-01), Daisley
patent: 4579498 (1986-04-01), Lukkari et al.
patent: 4732066 (1988-03-01), Del Fabro et al.
patent: 4871059 (1989-10-01), Rantanen et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for orienting and achieving the optimal density of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for orienting and achieving the optimal density of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for orienting and achieving the optimal density of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2512442

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.