Dispensing – With discharge assistant – Rotary
Reexamination Certificate
1999-08-06
2001-06-26
Colilla, Daniel J. (Department: 2854)
Dispensing
With discharge assistant
Rotary
C222S063000
Reexamination Certificate
active
06250513
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a device for metering a powder, in particular for a dusting device for dusting printed sheets of paper, having a device for delivering the powder, an axially symmetrical metering element arranged underneath the delivery device, and a drive for the metering element.
BACKGROUND OF THE INVENTION
A print dusting installation in printing presses for dusting printed sheets with powder is known from German Patent DE 18 20 842 U1. This installation has a funnel tube for the powder, which terminates on a metering roller. The metering roller has metering chambers constituted by grooves extending in the longitudinal direction. An amount of powder is specifically transported out of the funnel via these metering chambers and conducted into an air conduit. There, the powder in the metering chambers is delivered.
In connection with these metering chambers it is considered to be disadvantageous that the powder is held in the metering chambers by means of an interlock, so that the powder must be actively removed from the metering chambers. Since the metering chambers extend transversely with respect to the conveying direction, there is the danger that the powder is compressed in these metering chambers and cakes there.
A roller is known from U.S. Pat. No. 4,867,063, which is provided with cells on its surface. Although it is possible to transport bulk material in a simple manner by means of this cell conveyor, when transporting powder the problem arises that the cells slowly become clogged, so that the transported volume is reduced over time. Thus, with such cell conveyors there is no assurance of a constant volume transport over an extended period of time.
SUMMARY OF THE INVENTION
The object of the present invention is therefore based on designing a device for metering a powder of the type mentioned at the outset in such a way, that the powder can be removed relatively simply from the metering element, and that there is no danger of the powder being compressed inside the metering chambers.
In accordance with the present invention this object is attained by means of a device of the type mentioned at the outset in that the metering element has a surface profile extending in the circumferential direction.
The fact, that the metering chambers extend in the circumferential direction of the metering element and therefore in the transport direction, prevents the powder from being compressed in the metering chambers. Moreover, the powder contained in the storage container is hardly affected, in particular no compressions or clumps are being created. Furthermore, the powder, which is located in the surface profile extending in the circumferential direction, can be delivered relatively easily out of this profile, because the powder lies relatively loosely in this profile.
A further development provides that the surface profile is embodied in the form of circumferential channels, circumferential grooves, circumferential corrugations, or the like. A surface profile designed in this way has the considerable advantage that the surface of the roller receiving the powder is enlarged by the engraving, so that the adhesive forces by means of which the powder is maintained on the roller are considerably greater than those of metering elements with a smooth surface. In this case the powder adheres so well to the roller which, for example, has been provided with channels, that it does not fall out of the channels even under the action of gravity. The surface profile has a preferred depth between 0.2 mm and 0.8 mm.
In accordance with the present invention an increase in the adhesive force is achieved in that the surface of the metering element is made powder-friendly. Thus, the surface can be roughened, sand-blasted, etched, chromated or electrolytically provided with a matte finish. These surfaces receive the powder particularly well and optimally transport it in the direction of the delivery opening, so that it is assured that a constant amount of powder is always delivered.
A further possibility of surface treatment provides that calcium carbonate or powder is glued to the surface of the metering element A roughening of the surface, which essentially corresponds to the grain size of the powder to be transported, is also achieved in this way.
A preferred embodiment provides that the metering element is designed as a metering roller. However, it is also conceivable to design the metering element as a cone or a sphere with a horizontal shaft. The powder is applied to the metering element in the area of an upper section and is removed from the metering element in a lower section.
Removal of the powder is assured by the present invention in that the metering element is provided with a device for loosening the powder from the metering element. This loosening device essentially operates in the circumferential direction or tangentially with respect to the circumferential direction. Here, the device can be a doctor blade, a brush or a blower nozzle. Such a device can enter into the surface profile of the roller, which extends in the circumferential direction, in a relatively simple manner and loosen the powder. This is not possible with cell conveyors of the above mentioned type since it is not possible, for example, to enter the individual cells with a doctor blade.
The drive for the metering element preferably is a step motor. In this connection it is provided in a further development that the drive, and in particular the entire device, is resiliently seated. The device is made to vibrate by the step motor, so that the flow of the powder is aided by this. Because of this it is possible to omit stirrers or the like.
In order to prevent the powder from flowing out of the storage container, the metering element has an outlet opening which, viewed in the direction of rotation, is offset by more than 180° with respect to the inlet opening. In this way the powder is prevented from directly entering the inlet opening via the surface profile of the metering element to the outlet opening, and from being mixed there in an uncontrolled manner with the air flow. The non-conveying area of the metering element is sealed, for example by means of a doctor blade.
In connection with a further development it is provided that the metering zone is laterally bordered by labyrinth seals. These labyrinth seals can be emptied via a drain. Labyrinth seals have the essential advantage that they can be produced relatively simply and do not require maintenance. Furthermore, a slide ring seal is provided between the drive and the metering element, which protects the drive against penetration by powder.
Further advantages, characteristics and details of the present invention ensue from the following description, in which a particularly preferred exemplary embodiment is described in detail, making reference to the drawings. Here, the characteristics represented in the drawings and mentioned in the specification as well as in the claims can be important for the present invention, either respectively by themselves or in any arbitrary combination.
REFERENCES:
patent: 3680779 (1972-08-01), Reilly
patent: 3760990 (1973-09-01), Lindquist
patent: 4154370 (1979-05-01), Mowbray et al.
patent: 4531839 (1985-07-01), Cunisse et al.
patent: 5615830 (1997-04-01), Matsunaga et al.
patent: 327747 (1958-03-01), None
patent: 1 820 842 (1960-09-01), None
patent: 37 39 968 A1 (1988-07-01), None
patent: 2583377 (1986-12-01), None
Patent Abstracts of Japan, “Powder Spray Device for Prevention of Ink Seepage Into Rear Side on Printer”, 2-76738, Mar. 16, 1990, M-982, Jun. 8, 1990, vol. 14/No. 266.
Colilla Daniel J.
Jones Tullar & Cooper P.C.
Weitmann & Konrad GmbH & Co. KG
LandOfFree
Device for metering a powder does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for metering a powder, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for metering a powder will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2453366