Surgery – Surgically implanted vibratory hearing aid
Reexamination Certificate
2000-05-22
2002-06-04
Shaver, Kevin (Department: 3736)
Surgery
Surgically implanted vibratory hearing aid
Reexamination Certificate
active
06398717
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a device for mechanical coupling of an output-side converter part of an electromechanical hearing aid converter which can be implanted in an artificial mastoid cavity outside the region of the middle ear, the converter part having a capacity to be excited to mechanical vibrations, to a preselected coupling site on the ossicular chain, the footplate of the stapes or the membrane which closes the round window or an artificial window in the cochlea, in the vestibulum or in the labyrinth (equilibrium organ), with a biocompatible, mechanically passive coupling arrangement which is connected to the output-side converter part and which reaches in the implanted state from the mastoid cavity into the tympanic cavity and adjoins the coupling site with the coupling end which is away from the hearing aid converter.
2. Description of Related Art
Electronic measures for rehabilitation of inner ear damage which cannot be surgically corrected have attained an important position today. With total failure of the inner ear, cochlear implants with direct electrical stimulation of the remaining auditory nerves are routinely used in clinical practice. In moderate to severe inner ear damage, for the first time fully digital hearing aids are being used which open a new world of electronic audio signal processing and offer expanded possibilities of deliberate precision audiological matching of the hearing aids to the individual inner ear damage. In spite of the major improvements in hearing aid hardware which have been achieved in recent years, in conventional hearing aids fundamental defects remain; they are due to the principle of acoustic amplification, i.e., especially to the conversion of the electronically amplified signal back into airborne sound. These defects include aspects such as the visibility of the hearing aids, poor sound quality as a result of the electromagnetic converters (speakers), the closed external auditory passage and feedback effects with high acoustic amplification.
As a result of these fundamental defects, there has long been the desire to abandon conventional hearing aids with acoustic excitation of the damaged inner ear and to replace these devices by partially implantable or fully implantable hearing systems with direct mechanical stimulation. Implantable hearing systems differ from conventional hearing aids; admittedly, the acoustic signal is converted into an electrical signal with a converter (microphone) and is amplified in an electronic signal processing stage; this amplified electrical signal is however not supplied to an electroacoustic converter, but to an implanted electromechanical converter which produces output-side mechanical vibrations which are supplied directly, therefore with direct mechanical contact, to the middle ear or inner ear or indirectly by a force-fit via an air gap in electromagnetic converter systems, for example. This principle applies regardless of whether there has been a partial or complete implantation of all necessary system components and also regardless of whether pure labyrinthine deafness is to be rehabilitated with a completely intact middle ear or a combined deafness (middle ear and inner ear damaged). Therefore, in the more recent scientific literature and in numerous patents, implantable electromechanical converters and processes for direct coupling of the mechanical converter vibrations to the intact middle ear or to the inner ear for rehabilitation of pure labyrinthine deafness and also to the remaining ossicles of the middle ear in an artificially or pathologically altered middle ear for care of conductive deafness and their combinations have been described.
Basically, all physical conversion principles can be used as electromechanical converter processes, i.e., electromagnetic, electrodynamic, magnetostrictive, dielectric, and piezoelectric. In recent years, various research groups have focused essentially on two of these processes; electromagnetic and piezoelectric. An outline of these converter versions can be found in Zenner and Leysieffer (HNO 1997 Vol. 45, 749-774).
In the piezoelectric process, mechanically direct coupling of the output-side converter vibrations to the middle ear ossicle or directly to the oval window is necessary. In the electromagnetic principle, the force coupling can take place via an air gap (“contactless”), i.e., only one permanent magnet is placed by permanent fixation in direct mechanical contact with a middle ear ossicle On the other hand, it is possible to execute the converter entirely within a housing (the coil and the magnet being coupled with the smallest possible air gap) and to transfer the output-side vibrations via a mechanically stiff coupling element with direct contact to the middle ear ossicle (Leysieffer et al. 1997 (HNO 1997, Vol. 45. pp. 792-800).
The patent literature contains some of the aforementioned versions of both electromagnetic and also piezoelectric hearing aid converters: U.S. Pat. No. 5,707,338 (Adams et al.), WO 98/06235 (Adams et al.), WO 98/06238 (Adams et al.), WO 98/06236 (Kroll et al.), WO 98/06237 (Bushek et al.), U.S. Pat. No. 5,554,096 (Ball), U.S. Pat. No. 3,712,962 (Epley), U.S. Pat. No. 3,870,832 (Fredrickson), U.S. Pat. No. 5,277,694 (Leysieffer et al.), commonly owned U.S. patent application Ser. Nos. 09/275,872 and 09/311,563 (Leysieffer), U.S. Pat. No. 5,015,224 (Maniglia), U.S. Pat. No. 3,882,285 (Nunley), and U.S. Pat. No. 4,850,962 (Schaefer).
The partially implantable piezoelectric hearing system of the Japanese group Suzuki and Yanigahara presupposes for implantation of the converter the absence of the middle ear ossicles and a free tympanic cavity in order to be able to couple the piezoelement to the stapes (Yanigahara et al.: Efficacy of the partially implantable middle ear implant in middle and inner ear disorders. Adv. Audiol., Vol. 4, Karger Basel (1988), pp. 149-159; Suzuki et al.: Implantation of partially implantable middle ear implant and the indication. Adv. Audiol., Vol. 4, Karger Basel (1998), pp. 160-166). Likewise, in the process of a partially implantable hearing system for those suffering from labyrinthine deafness of U.S. Pat. No. 4,850,962 (Schaefer), basically, the incus is removed in order to be able to couple a piezoelectric converter element to the stapes. This also applies especially to other developments which are based on Schaefer technology and which are documented in the aforementioned patents (U.S. Pat. No. 5,707,338, WO 98/06235, WO 98/06238, WO 98/06236, and WO 98/06237).
The electromagnetic converter of Ball (“Floating Mass Transducer FMT”, U.S. Pat. No. 5,624,376 and U.S. Pat. No. 5,554,096) is conversely fixed with titanium clips directly on the long process of the incus when the middle ear is intact. The electromagnetic converter of the partially implantable system of FREDRICKSON (Fredrickson et al.: Ongoing investigations into an implantable electromagnetic hearing aid for moderate to severe sensorineural hearing loss. Otolaryngologic Clinics of North America, Vol. 28/1 (1995), pp. 107-121) is mechanically coupled directly to the body of the incus when the ossicular chain of the middle ear is likewise intact. The same applies to the piezoelectric and electromagnetic converters of LEYSIEFFER (Leysieffer et al.: An implantable piezoelectric hearing aid converter for patients with labyrinthine deafness. HNO 1997/45, pp. 792-800, U.S. Pat. No. 5,277,694, U.S. patent application Ser. No. 09/275,872, and U.S. patent application Ser. No. 09/311,563). Also in the electromagnetic converter system of MANIGLIA (Maniglia et al: Contactless semi-implantable electromagnetic middle ear device for the treatment of sensorineural hearing loss, Otolaryngologic Clinics of North America, Vol. 28/1 (1995), pp. 121-141) when the ossicular chain is intact a permanent magnet is permanently fixed mechanically to the ossicular chain and is however mechanically driven via an air gap coupling by a coil.
In the described converter and coupling versions basically
Leysieffer Hans
Müller Gerd M.
Nixon & Peabody LLP
Phonak AG
Safran David S.
Shaver Kevin
Szmal Brian
LandOfFree
Device for mechanical coupling of an electromechanical... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for mechanical coupling of an electromechanical..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for mechanical coupling of an electromechanical... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2975596