Device for measuring particulate volume and mean size in water

Optics: measuring and testing – For size of particles – By particle light scattering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S340000, C356S343000

Reexamination Certificate

active

06466318

ABSTRACT:

FIELD OF INVENTION
The invention is a submersible laser scattering instrument that measures particle total volume, particle total area and Sauter mean diameter. It allows a single calibration for all particle sizes 1.2-250 &mgr;m.
BACKGROUND
Prior Sensors for Sediments: In most cases, suspended sediment ‘concentration’ has been estimated via one parameter—optical transmission, optical backscatter, or acoustic scattering cross-section. A one-parameter sensor necessarily obtains a weighted sum of the concentrations of underlying size classes. For example, optical transmission or backscatter sensors estimate approximate (not exact) total particle area. In contrast, acoustic sensors, usually operating in the Rayleigh regime [i.e,. when the insonifying acoustic wavelength &lgr;
a
is of the same order or greater than the particle diameter, i.e. k
a
a<1 where k
a
=2&pgr;/&lgr;
a
] respond to the sum of the squares of particle volumes. This condition is satisfied for particles of 1 mm diameter or smaller at acoustic frequencies of 1 MHz or lower. Neither of these sensors simply sum the mass or volume concentrations to provide the needed measure of C
n
or the total concentration C
n
. For this reason, unless the particle size distribution is invariant in space and time, the calibration of these single-parameter sensors in laboratories before field usage, while a common practice, is of limited value. The most unfortunate consequence of the use of such calibrations is the lack of even the error bounds in the interpretation of data. Certainly, historical data with these unknown errors are in part responsible for the large variability in predictive capability of sediment transport models.
Optics affords a capability to observe a wide range of particle sizes. By measuring optical scattering over a wide dynamic range of angles [dynamic range is defined here as the ratio of maximum to minimum scattering angle], a measurement is obtained with information content on a correspondingly large dynamic range in particle sizes. The angular dynamic range is typically 100:1 or 200:1 so that size ranges from, say, 1-200 microns can be studied with a single instrument. This principle is called laser diffraction. The name derives from the approximation to the exact solution to Maxwell's equations describing light scattering by spheres. The exact solution for homogeneous spheres of arbitrary size, due to [Mie, 1908], has the property that for large particles, i.e. when the real part m of the complex refractive index, and particle size ka (k being 2&pgr;/&lgr;,&lgr; is optical wavelength) are such that (m−1)ka>>1, the scattering at small forward angles appears nearly identical to the diffraction through an equal diameter aperture (see [Bom and Wolf, 1975]). An even more significant observation is that under these conditions, the refractive index of particles becomes largely irrelevant. This implies that the particle composition, or for that matter, possibly particle internal structure and homogeneity, are of little to no consequence. As the particle composition does not determine its scattering characteristics, the method is fully general for particle sizing. It is for this reason, that this has become the most widely used particle sizing method, employed for measuring diverse types of particles, including cements, chocolates or microbes.
The first underwater instrument based on laser diffraction was developed by [Bale and Morris, 1987]. They adapted a commercial laboratory instrument manufactured by Malvern Instruments of UK for ocean use. They have presented results from estuarine particle sizing [Eisma, 1996]. Recently, a team of French scientists has employed a submersible instrument manufactured by CILAS ([Petrenko et al., 1997], [Gentien et al., 1995], [Lunven et al., ]). Multi-angle scattering was observed using a CCD line array photo-detector ([Agrawal and Pottsmith, 1994]). The use of CCD's unnecessarily required long averaging times to remove the influence of laser speckle, and also required complex, fast electronics.
SUMMARY OF THE INVENTION
The invention is referred to as the LISST-25. Based on laser diffraction technology, the LISST-25 is designed to record the total suspended particle area and volume concentrations, and the Sauter mean diameter of suspended particles. The main advantage of the LISST-25 is that, unlike transmissometers, optical backscatter sensors, or single-frequency acoustic sensors, the LISST-25 has a constant calibration over the covered range of particle sizes. The LISST-25 does not give the particle size distribution.
The technique used by the LISST-25 sensor differs from other turbidity sensors. It measures the forward scattered light from a collimated laser beam using only two specially designed silicon detectors. These measurements are used to obtain the total volume and total area of particles directly, bypassing inversion of data as is done in other instruments to obtain the particle size distribution. From the ratio of total volume and area, the Sauter mean diameter is obtained.
The LISST-25 is a self-contained instrument that includes optics and electronics, datalogger, and a battery pack. The on-board data logger allows for simple programming of sampling schedules and can be connected to a personal computer via an RS-232port. The depth rating is 300 meters. The instrument covers a wide dynamic range of concentrations, from 0.1 to 1,000 mg/l (microliters/liter). The operational limit of the instrument is based on optical transmission of water, i.e., beam c range between 0.5 m
−1
to 25 m
−1
.
In one aspect, the invention is an instrument based on scattering of laser light for measuring both total particle volume and total particle area at the same time for particles suspended in water. A beam of laser light is directed across a void where a sample of water containing particles is admitted. After passing through the water, the light which is forward scattered out of the direct beam falls on two detectors at the same time. The first detector has an active surface shape which is configured to produce an output signal proportional to total particle area at varying total particle areas. The second detector has an active surface shape which is configured to produce an output signal proportional total particle volume varying total particle volumes.
Each detector falls within in a radius surrounding the unscattered beam of light. At each annulus within this circle, whether the annulus is described as having a finite width or an infinitely small width, the active surface shape of each detector intercepts less than the entire annulus. The active surface shape of the detector for area increases with distance from the axis of the beam at an increasing rate. The active surface shape of the detector for volume decreases with distance from the axis of the beam at a decreasing rate.
In the preferred embodiment, the output from each detector is directly proportional to the quantity to be measured. This is accomplished by the carefully designed shape of each detector. These two measured outputs are then electronically combined to obtain mean diameter for the measured particles.
In the preferred embodiment, the two detectors are both fabricated on a single semiconductor substrate plate made of silicon. Each detector is formed of conventional photodiode material deposited on the silicon plate. Alternatively, the invention may be embodied in two separate detectors on separate substrates. Whether formed on a single substrate or two substrates, instead of depositing the photodiode material on the substrate in the desired active surface shape, the preferred active surface shape may be achieved by placing a mask on top of photodiode material with an active surface area larger than the desired active surface shape. The mask can simply cover the periphery beyond the desired shape or it can be comprised of a pattern of dots or checkerboard or other

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for measuring particulate volume and mean size in water does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for measuring particulate volume and mean size in water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for measuring particulate volume and mean size in water will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3000479

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.