Surgery – Means for introducing or removing material from body for... – Gas application
Reexamination Certificate
2000-11-16
2003-10-14
Lazarus, Ira S. (Department: 3749)
Surgery
Means for introducing or removing material from body for...
Gas application
C604S023000, C604S058000
Reexamination Certificate
active
06632194
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a device for insufflating gas into a human or animal body by means of an insufflation apparatus to be connected through a hose to a gas supply device, said hose being connectable to the gas supply device by means of a hose coupling interface comprising complementary connection elements at or in the gas supply device and at the hose end directed towards the gas supply device, and a sterile filter element being provided. —De-vices of the type mentioned above are in particularly used in the fields of endoscopy and laparoscopy. The typically employed gas species is carbon dioxide; however other gases may also be used, for instance with pharmaceutical additions. As an insufflation apparatus can be employed a Veress needle. A gas supply device usually comprises a gas source or a connection to a gas source, a pressure reducer, a flow meter and/or pressure meter, and a control circuitry for controlling pressure or flow, respectively. It is understood that the mentioned components are connected to each other in a suitable way by gas lines (hoses or tubes). The components listed above of a gas supply device are however not the subject matter of the present invention, and for an only exemplary specific embodiment reference is therefore made to document DE 361 101 8 C1.
BACKGROUND OF THE INVENTION
In practical applications, devices of the type mentioned above suffer from the problem of non-sufficient sterility. Basically it is desirable that all components, elements and instruments coming into contact with the gas arc sterile or can be sterilized, respectively, prior to operation. With regard to sterility, however, two fields of problems will have to be taken into account. A first field of problems is that hose connections and tubes within a gas supply device cannot easily be protected from germination. This applies in particular to the process of manufacture, too. Therefore it can be expected that newly supplied gas supply devices internally comprise germs growing in number during continued use. The second field of problems is based on the application of the device. In spite of a gas flow towards the patient, contamination of components of the gas supply device with germs opposite to the gas flow direction cannot be excluded, is under certain conditions even probable. By means of the device, namely, an over-pressure is generated in the body cavity into which gas is introduced. Under special circumstances, for instance by manual pressure on the abdomen, reflux into the gas supply device may occur. Aerosols with body liquid or is body liquid itself may thus enter into the insufflation apparatus, into the hose connected thereto, and into the gas supply device. When using the system on another patient, there is a risk of cross-contamination, even after replacement of the insufflation apparatus and of the hose.
For solving such problems it is well known in the art to arrange a sterile filter between insufflation instrument and gas supply device. The sterile filter is mounted in the hose between gas supply device and insufflation instrument. This is rather awkward and in addition makes the hose unhandy. Further, it cannot be excluded with sufficient reliability for the insofar known device that an operator will not mount a sterile filter at all or will mount a used sterile filter, with the consequence of health risks for the patient.
SUMMARY AND OBJECTS OF THE INVENTION
In contrast thereto, the invention is based on the technical problem to provide a device for insufflating gas, by means of which on one hand sterile working is secured and which on the other hand is easy to handle.
For solving this technical problem the invention teaches that the sterile filter element carries the connection element. In other words, the sterile filter element is not inserted anymore, in an awkward manner, into the hose line, but rather obtains a double function, namely on one hand the arrangement of a sterile barrier and on the other hand as a mechanical connection element for connecting the instrument or the hose thereof to the gas supply device. It is understood that the connection element of the gas supply device is adapted such that a connection cannot be achieved by means of a hose end only. This will lead on one hand to a particularly simple handling. On the other hand, it is achieved as a particularly important advantage that use of the device without a sterile filter element, whether deliberately or inadvertently, is virtually impossible. For a connection of the insufflation instrument or of the hose, respectively, to the gas supply device will only be possible via the sterile filter element. When the sterile filter element is firmly connected with the hose, it is also secured that in case of a rejection of the sterile filter element, also the hose connected thereto is rejected, and vice versa. Moreover, sterile filter element and hose can be packed and kept for later use as a sterile unit. The term firm connection means in this context that the hose cannot be removed by hand from the sterile filter element.
In detail, the construction may be such that the sterile filter element comprises a housing and a filter unit arranged therein, a connection section of the filter housing being adapted as a connection element. When placing and arranging the filter unit, it has to be considered, of course, that the gas will completely flow through the filter unit, and that there are no side ways or leakages for the flowing gas. The filter element may for instance be a membrane filter with a flow capacity of 5-100 liters/min, preferably 16-60 liters/min. As a material may for instance be selected PTFE with a pore size of 1-5 &mgr;m, preferably 3 &mgr;m. Such membrane filters have a filtration efficiency of 99.9998%. In principle, however, all other types of filter elements providing sufficient germ retention and having a sufficiently low gas flow resistance can also be used.
The two complementary connection elements can basically be configured in various ways. For instance, bayonet catches, screw-on or plug-in connections or quick-connect devices being common for hose or line technology are suitable. In a preferred embodiment of the invention, the connection elements comprise complementary dovetail elements that can be slid into each other. With regard to their longitudinal extension, the dovetail elements may be oriented in a surface substantially orthogonal to the gas flow direction; it is also possible to arrange the dovetail elements in a single or double-curved surface (for instance partial cylinder jacket surface or partial spherical surface). In this embodiment, for connecting the hose, the connection element arranged at the sterile filter element is slid into the complementary connection element provided at the gas supply device, and with a complete insertion a lumen of the gas supply device and a lumen of the sterile filter element are opposite to each other (sealed against the environment) and permit gas flow. In this case, one of the connection elements may comprise an actuating element for a shutter provided in the gas supply device, said shutter closing the gas supply device in a gas-tight manner, when the connection element of the hose is not put in place, preferably a gas supply device lumen in the area of the connection element of the gas supply device. The actuating element may be an edge at the sterile filter element pushing the shutter forward when the sterile filter element is slid in, an displaces or swings it from the closed position into the open position. The shutter may be springloaded in the direction of its closed position. In addition, a latch or hold element may be provided in the open position of the shutter, said latch or hold element holding the shutter against the spring force in the open position. This may be achieved in the form of a (mechanically or electrically releasable) latch. Then, in the gas supply device, an actuating element may be provided by means of which this latch is released and—with sufficient spring force on the shutte
Mehner Gotthilf
Schramm Eckhard
Lazarus Ira S.
McGlew and Tuttle , P.C.
Ragonese Andrea M.
W.O.M. World of Medicine GmbH
LandOfFree
Device for insufflating gas does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for insufflating gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for insufflating gas will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3124071