Elongated-member-driving apparatus – Surgical stapler – With magazine
Reexamination Certificate
1999-08-04
2002-10-01
Robert, Eduarto C. (Department: 3732)
Elongated-member-driving apparatus
Surgical stapler
With magazine
Reexamination Certificate
active
06457625
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to the field of surgical devices. More specifically, this invention relates to an improved surgical device for inserting tissue fasteners.
The surgical device of the invention is particularly but not solely intended to be used in repair surgery of traumas of soft and/or tough tissues containing fibrous structures, such as knee meniscal tissues.
BACKGROUND OF THE INVENTION
In the past, doctors have effectively treated internal ruptures and tears of tissue by suturing, often with bioabsorbable sutures. For instance, this technique for treating ruptures of meniscal tissue in the knee has been described in N. A. Palmeri, T. F. Winters, A. E. Joiner and T. Evans, “The Development and Testing of the Arthroscopic Meniscal Staple”, Arthroscopy, Vol. 5, No. 2, 1989, p. 156. However, suturing, particularly arthroscopic suturing, has many drawbacks. It is a complicated and tedious technique where risks for the patient are significant because of the danger to vessels and nerves. Additionally, the suturing of a ruptured meniscus leaves a single or several loops of sutures on the surface of the meniscal tissue, which can irritate joint cavity tissues. Therefore, for a long time surgeons have desired an absorbable fixation device, like a staple or fastener, which has the advantages of absorbable suturing techniques but which can be used more rapidly and safely than sutures.
Tissue fasteners have been developed, including fasteners that may be inserted entirely below the surface of the tissue that is being treated, thereby preventing any irritation that may result from the portion of the fastener remaining above the ruptured tissue surface. These fasteners are described in detail in U.S. patent application Ser. No. 08/887,130, entitled SURGICAL FASTENER FOR TISSUE TREATMENT, by Tormala, et al., which is hereby incorporated by reference.
Accordingly, there is a need for surgical devices to insert these fasteners. Such devices must be accurate, reliable, quick, easily positioned and operated within a patient, and cost effective. It is important to reduce the invasiveness and length of any surgery to repair internal ruptured tissues.
Certain previous devices for installing tissue fasteners require that the fasteners be manually inserted into the patient. It is time consuming for fasteners to be inserted with such devices because the surgeon has to, for instance, repeatedly tap the fastener until it is fully inserted into the patient. Further, because of the manual propulsion of the fastener, it is impossible with such devices to ensure that each fastener receives a measured, consistent amount of force to drive it into the patient.
Other previous devices for installing tissue fasteners have used mechanical techniques for propelling fasteners into a patient, but have only had the capability of holding one fastener at a time, thereby requiring the surgeon repeatedly during an operation to remove the device from the patient, load another fastener, and reinsert the device into the patient. It is important that a surgeon be able to insert these fasteners precisely. Thus, it is time consuming to remove the device from the patient and then reposition it so that it is in position to deliver a fastener exactly where needed. Having to do so increases the length and difficulty of the surgery, and the concomitant risk of infection or other complications to the patient.
There have also been devices for installing tissue fasteners that are capable of holding a fixed number of fasteners. These devices, however, are self contained and are not capable of receiving additional fasteners. These devices also do not provide enough flexibility to the surgeon concerning the number of fasteners used during the operation because in many cases, the surgeon will not know how many fasteners are needed until the operation has begun. For instance, if the device holds six fasteners, yet the operation demands eight fasteners, after the sixth fastener, the surgeon must remove the device, dispose of it, and insert a second new device containing another six fasteners into the patient. This device must then be disposed of after only two of its six fasteners have been inserted into the patient. The use of such a device increases the length and difficulty of the surgery, because the surgeon must change devices in the middle of the operation. This poses an added risk, because the second device could have slightly different operating characteristics than the first device to which the surgeon has become accustomed. Further, such devices are inefficient and costly because a single surgery could require the use of more than one delivery device. This is compounded by the fact that fasteners in the device that are not used are disposed of along with the delivery device.
Further, none of these devices provide a method for inserting fasteners in such a way that no part of the fastener remains on or above the surface of the tissue being treated. It is advantageous to be able to insert fasteners entirely below the surface of the tissue being treated to avoid any irritation or inflammation that could occur when other tissues rub against that portion of the fastener on or above the tissue that has been treated.
An additional problem with previous devices in this field is that their conduits are invariably straight or invariably curved. At times, a surgeon is required to use these devices to repair tissue that is difficult to reach. Further, a surgeon must precisely insert many different fasteners at different angles. Thus, at times, a straight conduit may be preferred, while at other times, it may be difficult for the surgeon to properly approach the tissue that is to be treated with a straight conduit and a curved conduit may be preferred. Presently, in such a situation, a surgeon would need to use entirely separate devices with different conduits to insert the different fasteners. Using entirely different devices during an operation poses the same risk as described previously—the second device could have slightly different operating characteristics than the first device to which the surgeon has become accustomed. This increases the risk that a fastener will not be optimally inserted. Further, such devices are inefficient and costly because a single surgery could require the use of more than one delivery device.
Thus, there is a desire in the field for a device to install tissue fasteners that is capable of holding more than one fastener and capable of receiving additional fasteners during an operation without requiring the surgeon to remove the device from the patient. With such a device, the surgeon may use as many fasteners as he requires, while only having to insert the device into the patient once. Also, no fasteners are wasted. This reduces the length, difficulty, and cost of the procedure. Further, there is a desire in the field for a device that is capable of inserting a fastener entirely within the tissue to be treated so that no part of the fastener remains above or on the surface of the tissue. Such a device reduces the likelihood of irritation and inflammation of the treated area. Also, there is a desire in the field for a device that accurately and reliably inserts fasteners. Lastly, there is a desire in the field for a device with a conduit that can be curved or straight, to allow the surgeon to more easily insert the fastener properly into the patient.
Thus, it is an object of the present invention to provide a device for installing tissue fasteners that allows a minimally invasive method for repairing torn or ruptured tissue.
It is further an object of the present invention to provide a device for installing tissue fasteners that is capable of holding more than one fastener and of receiving additional fasteners during an operation without requiring the removal of the device from the patient.
It is further an object of the present invention to provide a device for installing tissue fasteners that is capable of inserting a fastener entirely within the tissue being treated, so that no pa
Karhi Olli
Tamminmaki Markku
Törmälä Pertti
Bionx Implants Oy
Robert Eduarto C.
LandOfFree
Device for installing a tissue fastener does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for installing a tissue fastener, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for installing a tissue fastener will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2929917