Device for inductively heating metallic strips

Electric heating – Inductive heating – Specific heating application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S646000, C219S662000, C219S670000, C219S675000, C148S568000

Reexamination Certificate

active

06770858

ABSTRACT:

DESCRIPTION
The present invention relates to a device for induction heating of metallic strips of differing widths having one multicoil transverse field inductor both above and below the strip to be heated, whose coil axes are positioned vertically to the strip surface.
A device for induction heating of flat metallic stock, having at least two inductors which are assigned in pairs lying above and below the metal stock, is known from German Patent Application 3928629 A1. In this device, the iron cores of at least one inductor have zigzag or wave-shaped grooves in the transport direction of the stock, into which the conductors are inlaid. The adjustment of the inductor power to the respective strip width is performed essentially by switching off selected coil conductors. An essential disadvantage of this known device is that optimized edge heating of the strips cannot be ensured due to the wound coil conductor course, since for conductors which lie in the edge region of the strip, one part of the conductor is nearer to the edge region of the strip than the other part.
The object of the present invention is thus to implement a device of the type initially cited in such a way that the disadvantages of the known relevant device are avoided, so that in the event of varying stock widths, a uniform heating pattern is achieved over the respective width, and particularly in the edge regions, with simple construction of the inductors.
This object is achieved according to the present invention in a device of the type initially cited in that, for optimized edge heating of the strips, the inductors each comprise at least one inductor segment, which is constructed as a coil composite of multiple approximately rectangular coils, which predominantly extend transversely to the transport direction of the strip, the coils having differing, stepped transverse extensions and the coil having the highest transverse extension extending at most up to the lateral edges of the widest strip and the coil having the lowest transverse extension extending at most up to the lateral edges of the narrow strip. In addition, each inductor segment is connected to a circuit for defined clocking of its coils and each inductor segment below the strip is assigned an identical inductor segment above the strip.
Using the device above, operators of heating devices are capable of treating the greatest possible spectrum of strips—particularly in regard to the strip width, but also in regard to the strip thickness and the material. Through the differing, stepped coils, which may be switched on in a targeted way, the energy consumption is optimized and a uniform heating pattern is achieved independently of the width of the strip used, with maximum temperature oscillations of ±15° C. In this case, the typical heating temperatures are approximately 400° C. for aluminum strips and approximately 500-600° C. for brass strips. The defined clocking of the coil selected for the respective strip width particularly counteracts overheating of the strip edges and therefore prevents warping or other quality losses; in this case, at least one coil may also be switched on permanently within a coil composite in addition to the clocked coils. The coil conductors of the upper inductor segments are switched in the same direction as the coil conductors precisely or approximately opposite below the strip to build up a magnetic field which penetrates the strip uniformly. The division of the inductors into inductor segments and the simple construction of the segments by using approximately rectangular coils reduces the production costs and the susceptibility to breakdown. Should a breakdown nonetheless occur, the affected inductor segment may be replaced individually. A long standstill time and high repair costs are therefore avoided.
The device according to the present invention may further be implemented in such a way that an inductor comprises multiple inductor segments, which are positioned one behind another at intervals in the transport direction of the strip. If there is a lack of space in furnaces which are too short, the inductor segments may also, however, be positioned one directly behind another. Through a divided inductor, the possibility results of switching each segment individually and therefore introducing the respective power necessary separately. Therefore, for example, the segments at the beginning of the heating device, which must heat the still cold stock, may introduce a higher power than the following segments.
The device according to the present invention may further be implemented in such a way that each inductor segment is a coil composite of three to eight coils. A coil composite of three to eight coils per inductor segment is simple to construct and produce. The coils, which are stepped in their transverse extension, have graduations of 4 to 10 cm to each strip side. This distance is selected low enough so that a strip whose edge is not sufficiently heated by the coil lying next to it may be heated optimally by clocking multiple coils.
The device according to the present invention may further be implemented in such a way that the difference of the transverse extension of one coil to the transverse extension of the next smaller or larger coil is at least 50 mm and at most 200 mm. A coil composite stepped in this way allows the operator of a facility to treat strips of different widths. Therefore, he is not only fixed on one strip width, but may heat multiple commercially available strips. If high requirements are placed on the temperature precision, a coil composite having small transverse extension differences must be selected. If the operator wants to treat strips of a width which may not be optimally heated by the coil composite already used in the furnace, he may easily remove the segments in the device and, for example, replace them by segments having coils of smaller transverse extensions and/or transverse extension differences.
The device according to the present invention may further be implemented in such a way that a coil composite is constructed from multiple nesting coils of differing transverse extensions, the coils having a shared axis.
The device according to the present invention may further be implemented in such a way that the coils of a coil composite are placed offset in relation to one another in the transport direction of the strip.
The above arrangements are used for optimizing the temperature distribution, particularly in the edge region of the strip. At the same time, there is the possibility of incorporating inductor segments of differing embodiments within an inductor.
The device according to the present invention may further be implemented in such a way that the coil conductors are positioned above one another or next to one another within a conductor groove. It is additionally possible for only one coil conductor to be in a conductor groove.
The device according to the present invention may further be implemented in such a way that at least two coils per inductor segment, selected as a function of the strip width, are switched in a clocked way so that only one coil is switched on at a time. In this way, for example, 500 or 1000 switching operations per second may be achieved. Through clocking of the coils of this type, overheating of the strip is prevented, particularly in the edge region. However, it is also conceivable to leave one coil continuously switched on, while two other coils are switched in a clocked way. In borderline cases, it may also be advisable to only switch on one coil. The power is provided in this case by one or more converters. The original 100% power of the converter may be relayed via thyristors to the coils of an inductor segment in such a way that, for example, one coil is constantly supplied with 70% of the total power, while two further clocked coils are assigned to receive 10% and 20% of the power, respectively. There is the possibility of clocking the coils of each inductor segment individually within an inductor.
The device according to the present inven

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for inductively heating metallic strips does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for inductively heating metallic strips, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for inductively heating metallic strips will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3344441

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.