Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication
Reexamination Certificate
2002-10-17
2004-06-22
Black, Thomas G. (Department: 3663)
Data processing: vehicles, navigation, and relative location
Vehicle control, guidance, operation, or indication
C700S300000, C219S203000, C219S528000, C219S624000
Reexamination Certificate
active
06754565
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a device for implementing control or regulating functions and a method of controlling or regulating in combination with a motor vehicle.
BACKGROUND INFORMATION
In regulating or control functions in a vehicle, various functions are typically implemented by different devices, each having control units adapted individually to the given functions. Examples include devices controlling the running gear functions for anti-lock brake systems, traction control, electronic stability programs, or other systems which influence wheel speed and in particular increase driving stability and/or safety, as well as drive control or transmission control systems. Different control devices, such as a brake control device, engine control device, or transmission control device, are used, depending on the respective application, often connected by an internal communication system within the vehicle, in particular a bus system such as CAN or TTP/C. In addition, there are also functions in a vehicle necessitating the use of multiple comparable control devices, i.e., having a similar hardware design. This is true, for example, of lock systems or the control of actuator motors such as those used for window lift motors or in adjusting outside rearview mirrors, where the functions and thus also the comparable control devices must be implemented multiple times, e.g., according to the number of vehicle doors. In general, for reasons of cost and complexity, an attempt is made to use standard control devices, i.e., universally usable control devices which may be used for different functions. This means that although the functionality varies, e.g., in the case of a lock system, taking into account the passenger door to the driver's door and the front doors to the rear doors, an attempt is made to use one and the same standard control device for each individual door for reasons of simplicity or at least to minimize the variety of models of control devices and/or control units as much as possible, because otherwise up to three different control units would have to be used with such a lock system.
German Patent No. DE 37 38 915 describes a universal control device for regulating systems. A universal control device that determines the system design and stores it on the basis of an external command only after installation is used. However, such a universal control device must also have a variety of variant-determining components, i.e., specially designed circuit parts and/or components and individualized interfaces via which corresponding sensors or actuators may interact with the control device at the same time in order to ensure a large number of control and/or regulating functions, in particular different control and/or regulating functions.
Integration of such variant-determining circuit parts and interfaces for the desired control functions into one control device has proven to be relatively complicated and cost intensive. The need for such a universal control device to fulfill a variety of different control or regulating functions has a negative effect on the complexity of the control unit due to the variant-determining circuit parts and interfaces which must be present concurrently. With regard to the space required, such a universal control unit will also be larger than a control device variant tailored specifically to the respective regulation or control function.
Conventionally, several electronic control devices having the same hardware design are used in a vehicle. The specific function of these control devices, which communicate via a bus, is impressed upon them from the outside, depending on their specific application. Here again, variant-determining circuit parts and interfaces corresponding to the universal control device must be present in each control device for implementation of the possible or desired preselectable regulation or control functions.
SUMMARY
Conventional solutions do not yield optimum results. Thus, in accordance with an example embodiment of the present invention, a wide variety of different control and regulating functions may be implemented, while optimizing cost and complexity aspects.
According to an example embodiment of the present invention, a device for implementing control and/or regulating functions in a motor vehicle is provided, having at least one control unit and at least one peripheral element, the peripheral element being connected to the control unit and receiving and/or sending signals, and the control or regulating functions being implemented by triggering and/or analyzing the signals of the peripheral elements. The device contains at least one control module which may be connected between the control unit and the peripheral element and may be composed of an electronic unit and a flexible extension, and the peripheral element may be contacted to the flexible extension. In this way, the specific variant-determining control or regulation electronic systems may be used expediently, based on the on-site controlled system, so that the peripheral elements, i.e., in particular actuators and sensors, may be positioned very flexibly and appropriately with respect to the controlled system.
A film extension, for example, a film conductor, may be used as a flexible extension. Printed conductors or conductor structures for power and/or signal transmission to and/or from the peripheral elements may be encased in a nonconducting flexible material, in particular a moldable material such as plastic. It is advantageous that in addition to the flexible positioning of the control modules and/or the peripheral elements, problems such as unfavorable ambient influences for the conductor structures and/or the signal and/or power lines may also be largely ruled out. In addition, in view of problems involving electromagnetic compatibility, the conductor structures and/or the flexible extension may advantageously also be shielded with respect to such interference, and/or the transmission of their own interfering radiation by the control module, i.e., the flexible extension and/or components placed thereon, in particular over the conductor structures may be suppressed or prevented.
Use of a uniform, standardized interface between the flexible extension, in particular the conductor film and the electronic unit may allow different electronic units having flexible extensions of any desired design may be combined to form control modules.
Electronic components may be installed on the flexible extension and controlled there or analyzed to advantage. In this way, it is possible to produce an optimum contact or an optimum working relationship, e.g., between sensors and the elements to be sensed. Components for controlling actuators, in particular power components, may also be mounted on the flexible extension to advantage in such a way that they migrate physically to the actuators and thus interfering radiation and/or power loss due to a high-power signal may be prevented or diminished through radiation of the conductor structure.
The electronic unit may be designed to be scalable, i.e., composed of predefinable uniform components or combinations of components and circuit parts, so that the variants of the electronic units and thus the control modules may be limited according to a modular principle. A wide variety of different functionalities for control or regulation of operating sequences or processes in a vehicle may be implemented expediently through combined use of several mutually supplementary control modules or electronic units so that nevertheless any missing functionality may be achieved by installing appropriate components on the flexible extension.
Finally, the device and the method of control or regulation of operating sequences of a motor vehicle is an advantageous embodiment of the present invention, where the control or regulation may be implemented by at least one control unit, and the control unit contains programs and/or data for controlling and/or regulating certain first operating sequences, at least one peripheral el
Horbelt Michael
Owerfeldt Andre
Black Thomas G.
Robert & Bosch GmbH
To Tuan C
LandOfFree
Device for implementing control or regulating functions and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for implementing control or regulating functions and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for implementing control or regulating functions and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3357420