Device for housing a planar optical component

Optical waveguides – Optical waveguide sensor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06701032

ABSTRACT:

The present invention relates to an improved device for housing a planar optical component such as a chemical sensor for example.
New chemical sensor technologies using optical techniques (in particular interferometric techniques) are providing new high performance devices. Whilst these devices are relatively simple in terms of components, the tolerances required in the assembly procedure can be extremely onerous. Of these, end illuminated interferometric devices are perhaps the most demanding. In such cases, sub-micron misalignment between the electromagnetic radiation source (typically a collimated, focussed laser) and the sensor substrate itself may be sufficient to prevent its correct operation.
There are several situations which may lead to distorted output from a prior art device. Thus, the light beam may pass over the top of the planar optical component and distort the output received by the detector. Similarly, where the device comprises a planar sensing waveguide and a planar reference waveguide, if the light misses a waveguide or fails to illuminate both equally, the output may be lost or distorted. Thus, If any of the components (eg light source, lenses, polarisers, sensors etc) are misaligned by as little as 2×10
−7
meters (200 nm) the performance of the device will be adversely effected. The provision of a device which ensures that waveguides are illuminated equally without admitting stray light represents a significant technical challenge.
More generally, there is a need for sensor assemblies of simpler construction and improved reliability. The range and applicability of chemical sensors could be greatly enhanced if it were possible to achieve lower manufacturing costs and greater robustness.
The present invention seeks to provide an improved device for housing a chemical sensor. The device is advantageously robust and gives enhanced signal to noise ratios (sensitivity) and has the ability to provide self diagnosis (thus predicting its own suitability to function as a chemical sensor) Moreover, the invention seeks to provide an optical (interferometric) chemical sensor device which is simple to assemble and fault tolerant in terms of construction errors and which may be used to obtain reliable information relating to the changes occurring within the device.
Thus viewed from one aspect the present invention provides a device comprising:
a holder for mounting a planar optical component (eg a chemical sensor);
a housing adapted to receive internally said holder so as to define a longitudinal path through the device in which the planar optical component is effectively exposed in free space; and
guiding means for correlating along said longitudinal path the position of said planar optical component and of a source of electromagnetic radiation when said holder is located within said housing, whereby to expose said planar optical component to said electromagnetic radiation along said longitudinal path whilst substantially eliminating stray electromagnetic radiation.
The exclusion of stray radiation enables the number of components to be minimised and enables straightforward analysis of the signals generated by the planar optical component (such as the centre of gravity of a series of interferometric fringes for example). This is achieved by ensuring that electromagnetic radiation excites substantially only the planar optical component. The device of the invention is suitable for the fault tolerant construction of planar optical sensors and ensures optimal performance from the planar optical component. Tolerances are typically reduced by approximately 1000 fold enabling cheap mass production methods such as compression moulding and injection moulding to be employed.
In a preferred embodiment, the device according to the invention comprises a planar optical component having a plurality of waveguides. Typically the planar optical component comprises a sensing waveguide and a reference waveguide. Preferably the planar optical component is any of those described in WO-A-98/22807 (IMCO (1097) Ltd et al)
Preferably the housing is provided with one or more seats upon which the planar optical component may be seated when the housing and holder are assembled.
Preferably the holder comprises a basal recess in which the planar optical component may be mounted. To ensure that the edge of the planar optical component which is to be excited by the electromagnetic radiation is suitably exposed in the longitudinal path, one or more longitudinal cavities may be provided in the base of the holder such that when the planar optical component is positioned adjacent an aperture in the housing, the majority of the leading and trailing edges of the planar optical component may be exposed in free space.
Preferably the device of the invention comprises a guiding means in the form of a spacer incorporated in the planar optical component or in the housing itself. In the first instance, the spacer may be incorporated in the planar optical component conventionally during manufacture. In the second instance, the spacer takes the form of (or is located on) a seat in the housing upon which the planar optical component is located in use. This latter embodiment has the advantages that the sensing layer of the planar optical component is more efficiently exposed to the test material, that the manufacture of the planar optical component is simplified and that the disturbance of the planar optical component (as a result of bringing it into contact with the seat or with the modified seat upon which the spacer is located) is minimised. The material from which the spacer is made is judiciously chosen in terms of refractive index and physical properties. The spacer is advantageously permeable to the sample under analysis.
In a first particularly preferred embodiment, the housing comprises a first aperture at a first end of a longitudinal path for admitting electromagnetic radiation and a second aperture at a second end of said longitudinal path for transmitting electromagnetic radiation. Provided the spacer is of a known predetermined thickness relative to the known distance between the first aperture and the surface upon which the planar optical component is seated within the housing, electromagnetic radiation may be effectively guided onto the waveguides.
In a second particularly preferred embodiment, the planar optical component and incorporated spacer may be located on a silicon baseplate. The silicon baseplate which is typically optically flat may be conveniently provided with a hole over which the planar optical component is located. Conveniently, the spacer may seal the hole in the baseplate provided the spacer is sufficiently (eg optically) flat.
In an especially preferred embodiment, the silicon baseplate is provided with a channel (eg a V-shaped channel) capable of receiving an optical fibre wherein the depth of the channel predetermines the position and height that electromagnetic radiation is emitted relative to the surface of the silicon baseplate. Since the position of the waveguides above the surface of the silicon baseplate is determined by the height of the incorporated spacer, the position of the electromagnetic radiation and the waveguides may be correlated. Stray light is simply emitted into the silicon.
In an alternative especially preferred embodiment, the silicon baseplate forms part of an integrated electro-optic device in which a laser source is integrated into the silicon baseplate. The guiding means is provided by an incorporated spacer located on the silicon baseplate or the planar optical component as hereinbefore described.
In either of the especially preferred embodiments, the output may be monitored by a discrete detector or an imaging fibre or fibre array may be used to collect the output image. Alternatively, a photodetector could be integrated into the silicon structure. Using fibres in and out is very useful in safety critical applications (ie there is no electricity).
In a preferred embodiment of the invention, the holder is removably received in the housing. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for housing a planar optical component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for housing a planar optical component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for housing a planar optical component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3281062

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.