Plastic article or earthenware shaping or treating: apparatus – Means making particulate material directly from liquid or... – By slinger or rotating liquid comminutor
Reexamination Certificate
2001-11-16
2004-06-22
Davis, Robert (Department: 1722)
Plastic article or earthenware shaping or treating: apparatus
Means making particulate material directly from liquid or...
By slinger or rotating liquid comminutor
C425SDIG001, C239S223000, C239S139000
Reexamination Certificate
active
06752609
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a device for producing synthetic fiber materials, with a polymer melt feed leading to a rotating hollow reactor, the wall of which can be heated and which widens conically in order to guide a film melt toward an open side that can be closed with a lid, and with ribs for dividing the melt film into fibers that grow rigid after leaving the hollow reactor.
2. Background Description
Synthetic fibrous materials with a polymer melt feed can be employed in particular as absorption agents that filter mineral oil and oil products, as well as a series of heavy metal ions, out of water. The process for manufacturing thermoplastic fibrous material usually involves two stages, namely the production of the melt and the formation of the fibers.
In known facilities, the thermoplastic material is first melted and the melt is then extruded through spinnerets in order to form the fibers. An apparatus known from SU 1 236 020 A exhibits a loading bin, a current supply, and a melt lattice, with a distributor for heated inert gas. The distributors are triangular in shape and are positioned uniformly over the melt lattice forming the surface. In the space above the lattice the thermoplastic material being processed is uniformly heated to a temperature close to the melting point and can then pass without hindrance between the triangular distributors, in the process of which there is a treatment with nitrogen. Connection points for mounting heating elements are located in the housing for the melt lattice. The heated material is thus melted and in turn reaches a worm gear and is pressed through the nozzles and formed into a skein or a thread. With facilities of this kind fibers can only be produced from high-quality raw materials, and an even rhythm must be assured when the raw material reaches the melt lattice and as the melt reaches the worm for removal.
Facilities are known from GB 1 265 215 and SU 669 041 A in which the fibers are produced from a melt strip, so that the uniformity of the melt throughput is not critical. Here the strip from the melt is divided into individual skeins at the edge of the rotating reactor. The reactor is a horizontally positioned, two-part basin with a hollow space and a working surface. Located in the hollow space are gap-like openings. An energy carrier penetrates from the outer cavity of the reactor through the gap-like openings and divides the melt strip into individual skeins, works them from two sides, makes them thinner, and draws them into fibers. In order to obtain a high-quality fiber with this apparatus the energy carrier must have a higher temperature than the melting temperature of the polymer, as well as a adequate speed, so that the melt skeins can grow thinner and longer and thus be formed into a fiber. The opened reactor basin results in an energy loss and diminishes the effectiveness of the manufacturing process.
Known from RU 2 061 129, furthermore, is an apparatus for producing fiber materials which exhibits an extruder, a circular head that forms a thread and is provided with radially positioned channels that run together in the center, and air current generator which simultaneously draws out the melt skeins lengthwise and cools them until them have become fibers, and an element for cutting the finished fibers that exhibits an extension converging in the direction of the arriving thread. The fibers are deposited under the influence of a stiff air current, which is aimed in the direction of the extruded melt skeins. The radially positioned channels that run together in the middle also require the use of high-quality raw materials. Otherwise these channels become blocked with a mass of material that is not fully melted, and this makes further transport through the melt liens more difficult. The production of high-quality fibers from raw materials of lower quality is thus impossible.
Known from RU 2 117 719 is a device of the initially mentioned type, in which a horizontally positioned, rotating, cylindrical hollow reactor is externally heated. The open part of the reactor has the form of a cone which increases in size and is sealed with an immovable lid. The cone lid, together with the lateral surfaces of the widening cone, forms a gap of 15 to 20 mm. In addition, the inner surface of the reactor is provided with flat ribs that have a triangular form over their length; the ribs are oriented in the direction of the fiber formation and point toward the melt outlet.
The device is equipped with a circular high-pressure air supply. With this known device it is possible to process thermoplastic material consisting of industrial and domestic refuse while simultaneously increasing the output of high-quality fiber material. In actual practice, however, a problem arises in that with conventional heating elements and a cylindrically shaped reactor it is impossible to uniformly heat the reactor wall and floor.
Consequently the temperature of the reactor floor and of the terminal components are always lower than the reactor wall. The melt collects in the corners between the wall and the floor and thus forms a kind of standstill area, where the melt cools and tends to stick to the floor and the transitional areas between the floor and the walls. The formation of such standstill areas diminishes the productivity of the apparatus and has a negative effect on the fiber quality. Solid parts of the polymer can be drawn out of the standstill area and transported, together with the melt, to the terminal part of the reactor under the effect of centrifugal forces, to be released along with the fiber. The result is that the fibers are formed unevenly, with thickened areas or inclusions of solid, unmelted pieces that vary in shape; the quality of the fibers is thus diminished.
To clean the standstill area the facility must be regularly shut down and the adhering polymer mechanically removed. If the reactor walls were heated to a greater degree this would lead to considerable overheating of the melt film. Another disadvantage of the known device rests in the fact that more than 30% of the introduced heat energy is directly employed in heating the strip. The residual energy released by the heater is consumed in heating the reactor interior and the ambient air through the transfer of radiation energy.
Furthermore, due to the back radiation between the heater and the reactor in the central part of the reactor the heating elements and the melt strip become overheated. This may result in the heater being burned and to the partial or compete burnout of the polymer. When there is a uniform distribution of the heater capacity in the radial and axial direction, the main quantity of heat gathers in the upper portion of the heater. In this case, overheating and burning of the heating elements is also possible.
SUMMARY OF THE INVENTION
The present invention is based on the problem of improving a device of the initially indicated type for the manufacture of synthetic fiber materials and in such a way that the fiber quality is improved while the energy consumption is reduced.
The invention solves this problem in a device of the initially indicated type in that the hollow reactor is vertically oriented and exhibits a continuously curved inner wall and an opening on the curved upper side of the wall to introduce the polymer melt and in that a rotating distributor plate is positioned opposite the opening, at a slight distance from the inner wall.
The device according to the invention is designed for the production of a uniformly thin melt film which can move to the open side of the reactor due to the continuous curve of the inner wall, without the presence of standstill areas. The uniformly thin film is successfully formed in that the polymer melt is fed axially through an opening on the curved upper side of the hollow reactor and there reaches a rotating distributor plate, which is positioned at a slight distance from the inner wall of the hollow reactor. The fed molten polymer is thus collected and flung evenly on
Gapeev Viktor
Volokitin Gennady
Zolov Serguey
Davis Robert
Del Sole Joseph S.
Microfaser Produktionsgesellschaft mbH
Whitham Curtis & Christofferson, P.C.
LandOfFree
Device for forming synthetic fiber materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for forming synthetic fiber materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for forming synthetic fiber materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3341945