Device for filtering out baseline fluctuations from physiologica

Surgery – Truss – Pad

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

A61N 504

Patent

active

054332087

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field Of the Invention
The invention relates to a device for filtering out baseline fluctuations from physiological measurement signals, comprising a sampling stage for the formation of sampled values of the measurement signals, a first low-pass filter connected thereto, a downstream stage for the reduction of the sampling rate by a predetermined factor, a subsequent nonrecursive second low-pass filter, a subsequent interpolation stage for increasing the sampling rate by the predetermined factor and a subtraction stage for the subtraction of the sampled values coming from the interpolation stage from the sampled values of the physiological measurement signal, coming from the sampling stage.
2. Description of the Related Art
Physiological measurement signals which are taken from patients are normally overlaid by disturbance signals such as, for example, the 50 Hz (60 Hz in the United States) alternating voltage induced by the alternating current grid, electrical muscle potentials and artifacts in conjunction with the taking of the physiological measurement signals from the patient. These disturbances are expressed, to the extent that they are of low-frequency type in comparison with the characteristic frequency of the physiological measurement signals, in the form of baseline fluctuations in the recorded measurement signal progression.
"Journal of Clinical Engineering", vol. 7, No. 3, July-September 1982, pages 235-240, discloses a device of the abovementioned type for filtering out baseline fluctuations from an electrocardiogram. In the disclosure, the baseline fluctuations are filtered out from the electrocardiogram signals in a high-pass filter which comprises a first nonrecursive low-pass filter with a downstream stage for the reduction of the sampling rate by the factor 8, a second nonrecursive low-pass filter connected thereto, a subsequent interpolation stage for increasing the sampling rate by the factor 8 and a subtraction stage, in which the baseline fluctuations obtained as a result of the low-pass filtering are subtracted from the electrocardiographic signal affected by the baseline fluctuations. As a result of the use of nonrecursive (FIR) filters having a pulse response with a limited number of pulses (finite impulse response), phase shifts and thus signal distortions in the filtering are avoided. However, the computing effort, i.e. the number of computing operations to be performed in the filter (multiplications) is very great in the case of nonrecursive filters, thus the sapling rate of the electrocardiogram is reduced by the factor 8, before the electrocardiographic signal is fed to the second nonrecursive low-pass filter. In this case, the first low-pass filter serves for the frequency limitation of the electrocardiogram, that is required for the reduction of the sampling rate. The greater the reduction factor, the smaller the computing effort in the case of the second nonrecursive filter, but at the same time the computing effort in the case of the first nonrecursive filter increases. Accordingly, in the case of the known device, there is provided, ahead of the actual baseline filtering, a prefiltering with a reduction of the sampling rate by the factor 2. As a result of this the resolution of the electrocardiographic signal in toto is reduced.


SUMMARY OF THE INVENTION

It is an object of the present invention of filtering out of baseline fluctuations from physiological measurement signals to reduce the required computing effort.
The object of the present invention is inventively achieved in an apparatus having the first low-pass filter that is a recursive filter, the cutoff frequency of which is selected in relation to the cutoff frequency of the second low-pass filter so that the frequency range of phase shifts caused by the first low-pass filter are filtered out in the second low-pass filter. In comparison with nonrecursive filters, recursive filters are indeed distinguished by a lower computing effort in relation to the filter performance or filter ac

REFERENCES:
patent: 4317094 (1982-02-01), Potter
patent: 4472785 (1984-09-01), Kasuga
patent: 4896152 (1993-01-01), Tiemann
patent: 5042026 (1991-08-01), Koike et al.
Journal of Clinical Engineering, vol. 7, No. 3, Jul.-Sep. 1982 entitled "Digital FIR Filtering of ECG Baseline Wander" by J. P. Marques De Sa, pp. 235-240.
IEEE Transactions on Biomedical Engineering, vol. BME-32, No. 12, Dec. 1985, entitled "Removal of Base-Line Wander and Power-Line Interference from the ECG by an Efficient FIR Filter with a Reduced Number of Taps", by J. A. Van Alste, Member, IEEE and T. S. Schilder, pp. 1052-1060.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for filtering out baseline fluctuations from physiologica does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for filtering out baseline fluctuations from physiologica, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for filtering out baseline fluctuations from physiologica will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2415653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.