Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
2002-12-18
2004-09-07
Vo, Anh T.N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
C347S021000
Reexamination Certificate
active
06786579
ABSTRACT:
The subject invention relates to the art of particulate dispensing technologies and, more particularly, to a device for dispensing particulate matter and a system for delivering the dispensed particulate matter to a processing site or apparatus.
BACKGROUND OF THE INVENTION
The present invention relates generally to the art of particulate dispensing technologies. It finds particular application in conjunction with the manufacture of pharmaceutical and non-pharmaceutical grade pills and will be described with particular reference thereto in the present application. However, it is to be appreciated that the invention is equally applicable for use in the manufacture of other products. One such example is in the area of powder coating, where a charged coating material, in particulate form, is delivered to an oppositely charged item to which the coating material is attracted and sticks. The coating material can be delivered in patterns of colors to provide a decorative coating or to print characters or symbols on the item, for example. The coated item is thereafter subjected to an elevated temperature causing the individual powder coating particulates to fuse together forming a smooth finished surface. As such, the invention of the present disclosure finds broad application in other areas of manufacture and is not intended to be limited to applications relating to pill manufacturing.
The manufacture of pills, such as tablets and capsules, for example, is long established and generally well known. One traditional method of manufacturing such pills is to blend together the proportionally appropriate amounts of various active ingredients or chemicals with other inactive or filler ingredients. These are typically dry materials in powder form having particulate sizes of from about 5 &mgr;n to about 250 &mgr;n. The batch of blended ingredients is then delivered to a machine that compresses the ingredients into a pill of the desired shape, such as a tablet, for example.
One disadvantage of such a process, however, is that to cost effectively produce such pills, the active and inactive ingredients are commonly blended together in large batches. The blended, bulk material is then delivered in metered shots to the machine that compresses the ingredients into the desired shape. Theoretically, each resulting pill would have the exact proportions of desired active and inactive ingredients. However, while the blending process is generally carefully controlled and thorough, it is not, in practice, possible for the proportionally exact amounts of active and inactive ingredients to be contained in each shot that is metered into the machine, when the ingredients are blended in bulk as discussed above. As such, any given shot of blended ingredients is likely to have a greater or lesser amount of each of the active ingredients than is otherwise intended. As such, the pill formed from such a shot will deliver the incorrect of amount of the active ingredients after ingestion.
Another disadvantage of such a traditional manufacturing method is the limited ability of such a known method to produce time-released pills. More and more, it is being found desirable to have different chemicals or ingredients of a pill be released at times that are different from one another, or to have certain more concentrated doses released at certain, predetermined intervals. While pills made from compressed metered shots of batch ingredients are generally able to dissolve over a controlled period of time and thereby release the active ingredients therein in a time-dependent manner, the method of manufacturing by its very nature strives to produce a uniformly blended pill. As such, it is not possible to have increased or decreased quantities of certain ingredients placed in specific positions throughout the pill to thereby release these ingredients at certain time-specific points in the ingestion process.
Other methods of manufacturing pills have been developed of late that produce pills having a variety of different chemicals or ingredients. These pills are better suited to release certain active ingredients at certain time-related points in keeping with more recent interests. One such method is solvent casting. Using this method, a solution of a carrier solvent and one or more dissolved active ingredients or chemicals is deposited on a pill substrate. The solvent is allowed to evaporate, leaving the dissolved ingredients deposited on the pill substrate. By repeating this process and varying the concentration of the dissolved active ingredients, a multi-layered pill can be manufactured that can time-release ingredients at desired intervals. This process also has disadvantages, however. One such disadvantage is that the process is still subject to the same batch mixing issues discussed above. Only here, however, the issue is the potential uneven concentrations of ingredients mixed in the solvent, instead of the potential uneven blending of dry, powdered ingredients, as in earlier processes. Furthermore, the process tends to be relatively slow, as time is required for the solvent to evaporate from the pill. What's more, the costs associated with handling and processing solvents and other liquids can be high.
Yet another disadvantage of current pill manufacturing devices and systems is the commonly high per pill cost that generally results from manufacturing a given pill in a small or-otherwise limited quantity. This is, in part, due to the significant amount of time and effort that is typically required to set up such arrangements in preparation for production. Current mass production arrangements that utilize bulk quantities of blended ingredients simply cannot cost-effectively manufacture small quantities of pills. As such, it is not possible to cost-effectively produce pills on an “as needed” or “on demand” basis. Furthermore, such arrangements are not particularly well suited for product development, where a small quantity of pills are made for each of numerous different pill compositions and/or configurations.
SUMMARY OF THE INVENTION
In accordance with the present invention, a device for dispensing particulate matter and a system using the same are provided and can be used in various applications, such as the manufacture of pharmaceutical and non-pharmaceutical grade pills, for example. Such use of the present device and system can be used to avoid or minimize the problems and disadvantages encountered in connection with known pill manufacturing systems of the foregoing character, while promoting the efficient manufacture of pills having complex configurations, providing flexibility in the manufacturing process, minimizing setup and preparation time, and maintaining a desired simplicity of structure and economy of manufacture.
More particularly in this respect, a particulate dispensing device is provided that includes a housing having a housing wall and a housing cavity at least partially formed by the housing wall. A dispersive element is supported in the housing cavity, and a particulate filter is also supported in the housing cavity in spaced relation to the dispersive element forming a fluidizing chamber therebetween in conjunction with the housing wall. A dispensing tube has a tube wall forming a dispensing passage that is in fluid communication with the fluidizing chamber for dispensing particulate matter therefrom.
Additionally, a system for delivering particulate matter to a processing site, apparatus or other target is provided that includes a particulate dispensing device and a fluid source. The particulate dispensing device has a housing with a housing wall that at least partially forms a housing cavity within the housing. A dispersive element and a particulate filter are each supported in the housing cavity. The dispersive element and particulate filter are spaced apart from one another forming a fluidizing chamber therebetween in conjunction with the housing wall. A dispensing tube includes an intake opening positioned within the fluidizing chamber, a delivery opening, and a dispensing passage that exte
Noolandi Jaan
Peeters Eric
Fay Sharpe Fagan Minnich & McKee LLP
Vo Anh T.N.
Xerox Corporation
LandOfFree
Device for dispensing particulate matter and system using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for dispensing particulate matter and system using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for dispensing particulate matter and system using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3231024