Device for determining the temperature in the interior of a...

Thermal measuring and testing – Temperature measurement – Combined with diverse art device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C374S134000, C374S135000, C374S165000, C374S183000, C236SDIG001, C702S130000

Reexamination Certificate

active

06709155

ABSTRACT:

FIELD OF THE INVENTION
The present invention refers to a device for determining the temperature in the interior of a vehicle.
BACKGROUND OF THE INVENTION
Vehicles equipped with air-conditioner devices have a temperature sensor for sensing the temperature in the interior of the vehicle, which sensor is hidden, for design considerations, and mostly arranged in the control of the air conditioner. For the interior temperature sensor to measure the temperature of the air in the car interior, air flows passed the interior temperature sensor that is generated by a ventilating motor also provided in the control. To this end, the interior temperature sensor is located within a channel into which the ventilating motor draws air through an opening directed towards the car interior.
This concept of determining the interior temperature by measuring techniques has basically proven useful in practice. It should be noted, however that the known systems are not error-free. For example, the system is susceptible to failure due to the presence of the ventilation motor, both with regard to the electrics and to the continuity of the airflow. If, for example, the flow resistance increases due to a clogged air-inlet opening of the channel, the interior temperature sensor is no longer sufficiently ventilated and can therefore no longer provide measuring signals representing the interior temperature with sufficient accuracy. Moreover, the interior temperature sensor can become soiled by particles entrained in the flowing air and cause inaccuracies in the measurement. This risk is particularly high in cars carrying smokers. Several attempts have been made to realize temperature measuring in the interior of a vehicle by means of a “non-ventilated” temperature sensor.
German Patent 37 22 000, for example, describes a device for measuring temperatures in the interior of a space, using two temperature sensors. While one temperature sensor is located near an inner wall defining the interior and is surrounded by the air inside the space, a second temperature sensor is situated directly on the surface of the wall. Through a differential measurement of the output signals of both temperature sensors and with consideration to a decoupling factor, the actual interior temperature is determined. Another device for measuring the interior temperature is described in German Patent 41 30 063.
From German Patent 34 40 880, a temperature measuring device for determining the air temperature in the interior of a car is known, wherein a thermal conductor element is located close to a temperature-sensitive measuring element, the thermal conductor element itself being thermally coupled with an outer wall of the car interior. In this manner, the measuring signal of the measuring element also includes the influence of the temperature of the outer wall of the car interior, adjacent to the temperature measuring device, on the air temperature.
German Patent 198 16 941 discloses a temperature measuring arrangement wherein a thermal conductor element is arranged between a measuring point and a temperature sensor.
Finally, German Utility Model 88 12412 describes a temperature measuring sensor for a cooling tower, which, in order to suppress temporary variations of the air temperature to be measured, is located with good thermally conductive connection on a support plate that also has good thermal conductivity and is subjected to the medium to be measured.
Unfortunately, the known interior temperature measuring systems with non-ventilated sensors are not developed far enough to allow for an exact determination of the interior temperature in any temperature condition the car interior and the adjacent car elements may be in.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a device for determining the interior temperature of a vehicle, with which a precise measurement or determination of the temperature can be obtained.
According to the invention, the object is solved with a device for determining the temperature in the interior of a vehicle, comprising:
a temperature sensor for arrangement behind a wall adjacent to the interior,
a processing unit receiving the measuring signal from the temperature sensor and outputting an output signal representing the temperature in the vehicle interior, and
a thermal conductor element for sensing the temperature of the air of the interior within the region close to the wall, the thermal conductor element being in thermally conductive contact with the temperature sensor and is provided to extend up to or close to the wall or through an opening in the walls.
When mounting the present device in a vehicle, the temperature sensor intended to sense the temperature in the vehicle interior, is located behind a wall defining the interior. Preferably, this wall is the front bezel of the vehicle's air conditioner control. However, any other wall or surface portion of the instrument panel with integrated or added components may be used. A thermal conductor extends through an opening in the wall, the thermal conductor being thermally coupled with the temperature sensor. By the thermal conductor, the thermal conductivity from the interior to the temperature sensor is improved. As an alternative, the thermal conductor extends to or close to the (rear side of the) wall. The thermal conductor may also be an integral part of the temperature sensor (a contact end if a Surface Mount Device (SMD) temperature sensor, for example).
The solution proposed by the invention allows to reliably and exactly measure the temperature in the interior of a vehicle. According to the invention, no ventilation system is required, whereby the function of the present device is improved and its service life is extended. Finally, the present approach is also less expensive. Under aspects of comfort, the present approach is further advantageous in that acoustic nuisances such as they are experienced with the operation of a ventilation motor, for example, are eliminated.
The thermal coupling between the temperature sensor and the thermal conductor element is suitably established by a contacting of the thermal conductor element and the housing of the temperature sensor, or by a thermally conductive connection of the thermal conductor element and one of the terminal contacts of the temperature sensor. The tatter possibility is of particular interest when the temperature sensor is a SMD component. Such a component has a relative large surface provided at its terminal contact ends and contacting the conductor paths of a circuit board. Thus, the conductor path may be used to thermally couple the temperature sensor and the thermal conductor element by also contacting the latter with the conductor path. The thermally conductive connection between the thermal conductor element and the temperature sensor is the better, the closer the contact points of the respective terminal contact end of the temperature sensor and the conductor path and of the thermal conductor element and the conductor path are arranged on the same.
Suitably, the thermal conductor element comprises a metal material or, more generally, a material with good thermal conductivity. For optical reasons, it may be advantageous to provide the thermal conductor element with a coating or to otherwise design it such that its surface possibly visible from the interior of the vehicle is similar or at least adapted to the wall behind which it is arranged or through which it extends.
In order to minimize the thermal influences of components, vehicle parts and the like provided in the vicinity of the temperature sensor, it is advantageous to enclose the temperature sensor, possibly together with the circuit board on which it is provided, with a thermal shield element formed from a thermally insulating material. The material used may be foamed plastics, for example, with open-cell foamed plastics being the material of choice.
In order to further minimize temperature influences from the environment of the temperature sensor, it is suitable to compensate for the temp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for determining the temperature in the interior of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for determining the temperature in the interior of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for determining the temperature in the interior of a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280565

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.