Device for compensating for an axial thrust in a turbo engine

Rotary kinetic fluid motors or pumps – With shaft connected fluid force subjected thrust balancing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S111000, C415S230000

Reexamination Certificate

active

06609882

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a device for compensating for an axial thrust in a turbo engine. The device has a radial seal that acts between a rotor and a housing of the turbo engine. An axial seal is provided and acts between the rotor and the housing. The turbo engine has a balance piston that is fixed to the rotor. The balance piston, the housing, the radial seal and the axial seal define a compensating chamber. An axial clearance of the axial seal is variable in correspondence to the operation-related axial displacement of the rotor. A compensating line is provided and brings about a pressure balance between a low-pressure region of the turbo engine and the device for compensating the axial thrust.
In a generally known device of this type, the axial forces that arise in the turbo engine are compensated with the aid of a balance piston. Such axial forces arise in both turbines and compressors. In order to improve the balance of forces, a number of balance pistons are provided in a step configuration. The behavior of individual stages of the steam turbine is taken into consideration by providing several ring surfaces, which are charged with the corresponding pressures prevailing in the stages. To accomplish this, compensating lines are needed by the stage groups, and furthermore the behavior of the stages must be simulated by appropriate seals. While thrust compensation is possible with this expensive configuration, a conventional anti-thrust bearing is still required on principle.
German Utility Model DE 17 01 436 teaches a device for compensating axial forces which is constructed as an auxiliary device and which is provided in addition to an anti-thrust bearing. In normal operation, the thrust bearing accepts the axial forces. Only upon overloading of the thrust bearing, i.e. given large axial movements of the turbine rotor, is the device activated for partial compensation of the axial forces.
German Patent DE 541 079 C teaches a steam turbine in which a partial compensation of an axial force is achieved by a balance piston. Here, a space that is defined by the balance piston, an axial seal and a radial seal is connected to a lower stage or to a capacitor. In order to prevent damage to the seals, above all in the idle state of the turbine and given unsteady operating conditions, a device for pushing the rotor of the steam turbine away from the seals by the external forces is required.
Published, Non-Prosecuted German Patent Application DE 44 22 594 A1, corresponding to U.S. Pat. No. 5,577,885, teaches a condensing turbine with at least two slip ring seals for sealing the turbine housing. A gap between the slip ring seal and the counter-ring that rotates with the rotor is independent of the thermal expansion of the condensing turbine. Linear deformations that occur are compensated in that the counter-ring is pressed against the slip ring under spring force. Therefore, the axial forces cannot be automatically corrected by the seal configuration known from DE 44 22 594. This is accomplished via a compensating line from the evaporation side of the condensing turbine to the space defined by the two slip ring seals and the balance piston.
Moreover, the condensing turbine requires at least one anti-thrust bearing for accepting the uncompensated axial thrusts.
International Patent Disclosure WO 99/30007 teaches a turbine with a balance piston in which a brush seal is provided at the balance piston.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a device for compensating for an axial thrust in a turbo engine which overcomes the above-mentioned disadvantages of the prior art devices of this general type, which allows an optimally complete axial thrust compensation given a simple construction and without appreciably sacrificing the performance of the turbo engine.
With the foregoing and other objects in view there is provided, in accordance with the invention, in a turbo engine having a housing, a rotor disposed in the housing, a balance piston with a side surface fixed to the rotor, and a low pressure region in the housing, a device for compensating for an axial thrust. The device contains a radial seal acting between the rotor and the housing, and an axial seal disposed between the side surface of the balance piston and the housing. The balance piston, the housing, the radial seal and the axial seal define a compensating chamber. A space between the axial seal and the balance piston define an axial clearance and the axial clearance is variable in correspondence to an operation-related axial displacement of the rotor. A compensating line is provided for bringing about a pressure balance between the low-pressure region of the turbo engine and the device for compensating for the axial thrust. The balance piston is charged with a pressure prevailing in the balance chamber and the pressure being dependent on the axial clearance. The compensating line charges an additional space disposed between the compensating chamber and an environment and is defined by the housing and the rotor. The additional space has a final pressure.
Accordingly, the axial seal is provided between the side surface of the balance piston and the housing, whose axial clearance is variable in correspondence to the operation-related axial displacement of the runner. The axial piston is charged with the pressure prevailing in the compensation chamber, which depends on the axial clearance. The inventive device requires only an annular space defined by the axial seal, the radial seal, the housing the balance piston, an additional space defined by the rotor and the housing, and the compensating line. An anti-thrust bearing is not required. Despite this simple construction, a complete compensation of axial forces takes place in all operating conditions of the turbo engine.
Even a slight axial displacement of the runner leads to a change of the clearance in the axial direction due to the balance piston, which is likewise connected to the rotor. The resulting influence on the sealing action of the axial seal also changes the pressure acting on the piston face. The inventive seal configuration leads to an automatic pressure control on this face, whereby the axial position of the runner is automatically adjusted, and the axial forces of the runners are completely balanced with the axial force of the balance piston. For this self-regulating thrust compensation, it is necessary to use an axial seal with a first-rate sealing effect, because otherwise the axial movements of the rotor are too large.
The respective diameter of the axial seal and the radial seal is selected as a function of the functional diameter of the turbo engine. Given the correct selection of these parameters, approximately the initial pressure of the turbo engine ensues in the compensation chamber given an extremely small axial gap of the axial seal, whereas the final pressure of the turbo engine is effective in the compensation chamber given a very large gap, owing to a compensating line. This way, even the extreme values of the possible thrust forces are covered.
So that all possible thrust forces can be compensated, the sealing actions of the axial seal and the radial seal are matched to one another.
The axial seal is preferably constructed as a slip ring seal or a brush seal. Given the utilization of the slip ring seal or the brush seal, a ring seal configuration emerges, which gives rise to only slight displacements of the turbine rotor.
Coordinated with the axial seal is an additional axial seal, which is furnished with a large base clearance.
The additional axial seal serves as a backup seal. Owing to its large base clearance, it comes into play only if the main seal fails.
In order to secure unsteady operating conditions, an anti-thrust bearing can be allocated to the rotor, which, due to its clearance, only comes into play given the extreme opening of the seal chamber, and which does not transmit any axial forces or cause any friction losses in normal operation.
Other fe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for compensating for an axial thrust in a turbo engine does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for compensating for an axial thrust in a turbo engine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for compensating for an axial thrust in a turbo engine will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077795

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.