Device for coating the flanks of spacer frames for...

Coating apparatus – Projection or spray type – Plural projectors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S324000, C118S426000, C118S428000, C118S503000

Reexamination Certificate

active

06368408

ABSTRACT:

The invention starts out from a device disclosed in DE 297 19 564 U1.
The prior art device described in DE 297 19 564 U1 is equipped with guide rolls that guide the lower member of a spacer frame between two opposing nozzles by bearing against its two flanks or sidewalls with their running surfaces (outer circumferential surfaces), while at the same time the nozzles apply an adhesive or sealant on the same two flanks. Relative to the specified conveying direction, these guide rolls are located ahead of the nozzles. In order to prevent slippage between the conveyor belt and the spacer frame which could result in uneven coating, the known device is equipped with pressing rolls that can be pivoted into position both ahead of and after the nozzles relative to the conveying direction, and can apply pressure on the upper side of the lower member of the spacer frame, thereby increasing pressure on the conveyor belt on which the lower member lies.
However, these pressing rolls are not suitable for guiding the spacer frame laterally.
Moreover, they have to be pivoted out of the motion plane of the spacer frame when upwardly projecting members of the spacer frame approach the pressing rolls during the coating process. Furthermore, when coating spacer frames with crosspieces, the pressing rolls have to be temporarily pivoted out of the motion plane of the spacer frame to allow the crosspieces to pass the pressing rolls. This could compromise the frictional connection between spacer frame and conveyor belt for spacer frames with closely spaced crosspieces.
In order to overcome these disadvantages, DE 297 19 564 U1 discloses an additional device for coating the flanks of spacer frames for insulating glass panes with adhesive or sealant. This additional device is comprised of a conveyor with nozzles on both sides of the conveyor for applying adhesive or sealant on the flanks of the spacer frame, a support above the conveyor for supporting upwardly projecting members of the spacer frame, and pressing rolls that can apply pressure on the upper side of the lower member of the spacer frame, thereby increasing pressure on the conveyor belt on which the lower member lies, and that can be pivoted away again. In this additional device the pressing rolls differ in that they do not bear on the upper side as first described, but only on the lateral edges of the upper side of the lower member of the spacer frame. This proposal makes use of the fact that the crosspieces are generally narrower than the spacer frame itself, so that pressing rolls that only barely reach into the spacer frame by contacting only the lateral edges of the upper side of the lower member of the spacer frame can pass the narrower crosspieces without having to be lifted off first
In a first exemplary embodiment, DE 297 19 564 U1 proposes stepped pressing rolls whose smaller diameter portion contacts the outer edge of the upper side of the spacer frame member and whose ring area, oriented perpendicular to the axis of rotation, contacts the flanks of the hollow cross-section of the spacer frame member. This exemplary embodiment is advantageous in that the pressing rolls, although only bearing down on an area on the upper edge of the frame member, cannot slide off the frame member, since the ring area of the pressing roll adjacent to the flank of the frame member is constrained by the flank. However, It is disadvantageous in that the width of the spacer frame has to be precisely known before the pressing rolls can be precisely set down on the lower member of the spacer frame. Moreover, the ring area of the pressing rolls rubs against the spacer frame which-causes some wear and tear.
In a second exemplary embodiment of DE 297 19 564 U1 pressing rolls with horizontal axes of rotation and conical running surfaces are disclosed. These pressing rolls can be pivoted down and positioned on the edge of the upper side of the lower spacer frame member. Here also the width of the spacer frame has to be precisely known in order to correctly position the rolls for them, on the one hand, to reach into the spacer frame sufficiently and to contact the upper edge of the frame member reliably, but on the other hand, to reach not too far into the spacer frame, so that they do not collide with the crosspieces. Furthermore, in case the hollow sections of the frame have sharp edges, the running surfaces of the pressing rolls may wear down resulting in unsteady running of the spacer frame.
It must be ensured that the pressing rolls in both exemplary embodiments pass both the thickest crosspieces as well as slightly eccentric ones without colliding with them.
The object of the current invention is a device of the type described in the beginning, where slippage-free transport of spacer frames, even spacer frames with crosspieces, during coating is achieved by simpler means.
This object is solved by a device for coating sidewalls or flanks of a spacer frame for insulating glass panes with an adhesive or sealant, in which the spacer frame consists of a plurality of members; comprising:
a conveyor that defines a conveying direction and on which one of said members of the spacer frame is laid down to be conveyed by said conveyor;
a support provided above the conveyor for supporting those members of the spacer frame that project upwardly from the conveyor;
opposing nozzles provided on both sides of the conveyor for applying said adhesive or sealant to the flanks of the respective member of the spacer frame laid down on the conveyor;
and guide rolls located above the conveyor that guide the respective member of the spacer frame laid down on the conveyor by bearing against both flanks of this member with their outer circumferential surface, or at least with an edge of said circumferential surface;
wherein at least a subset of the guide rolls is so designed and/or arranged that during the conveying process as they roll along the flanks, they exert on the flanks with their outer circumferential surface or with the edge thereof an additional force that is directed towards the conveyor.
Advantageous further embodiments of the invention are the subject of the dependent claims.
According to the invention the guide rolls that contact the flanks of the lower member of the spacer frame with their running surface (outer circumferential surface), or at least with their edge, are designed and/or arranged so that they exert on the flanks of this member of the spacer frame a force that is directed against the conveyor during the conveying and coating process. This may be achieved by applying a force on the guide rolls, after clamping the lower member of the spacer frame between them, and directing this force against the conveyor, whereby the force may not exceed the static frictional force between the guide rolls and the flanks of the spacer frame. In this manner the guide rolls, only by contacting the flanks of the spacer frame, can also affect the frictional connection between spacer frame and conveyor in order to eliminate slippage between the conveyor and the spacer frame.
The conveyor is customarily configured as an endless, driven conveyor belt. The conveyor belt is dragged over an essentially horizontal support area that supports and guides the belt from below. Also conceivable is a conveyor belt in the form of a horizontal row of synchronized driven rollers with essentially horizontal axes of rotation.
Especially advantageous and therefore preferred is the use of guide rolls whose axis of rotation is inclined against the conveying direction of the conveyor. Because of the inclination the guide rolls exert a force that is directed against the conveyor while and by rolling on the flanks of the lower member of the spacer frame. This force increases as the axis of rotation of the guide rolls is tilted from the well-known vertical to a tilted position that is inclined against the conveying direction. Since with increasing inclination friction between the guide rolls and the flanks of the spacer frame member increases also, a small inclination is preferred. It follows that th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for coating the flanks of spacer frames for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for coating the flanks of spacer frames for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for coating the flanks of spacer frames for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2902609

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.