Device for cleaning a wafer of abrasive agent suspension...

Brushing – scrubbing – and general cleaning – Machines – Brushing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C015S021100, C015S088200, C015S102000

Reexamination Certificate

active

06487744

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a device for cleaning a wafer of abrasive agent suspension (slurry) remaining after polishing with brushes and DI water.
The fabrication of integrated circuits begins with the production of high-quality semiconductor wafers. These wafers are usually subjected to a polishing operation to provide an extremely level starting surface of the wafers. During the subsequent structuring of the substrate, it is known to build up on the wafer, inter alia, layers of, for example, conductors and dielectrics, on which then other such layers are in turn to be produced. With structuring becoming ever finer, the associated replication processes are becoming more sensitive to surface variations on the substrate. Therefore, it has now become necessary to “re-level” the wafer surface even while the production of the integrated circuit is in progress. The re-leveling operation is referred to as planarizing and is nowadays usually accomplished with the CMP method: that is, with the aid of a chemical-mechanical polishing process.
The joint effect of a polishing surface onto which an abrasive agent suspension (slurry) is being pumped and the relative movement between the polishing surface and the wafer in this case produces a combined mechanical and chemical process on the surface of the wafer. This process creates a highly level surface on the wafer. In order to remove the still moist remains of slurry after the CMP process, cleaning steps are required, since the remains of slurry otherwise crystallize or, due to highly contaminated wafers, the defect density increases and the service life of the brush cleaners (following equipment for cleaning the wafers of particles) is reduced.
One of the pre-cleaning steps after the chemical-mechanical polishing process is completed with a brush device (also known as a scrubber). In this case, a special washing fluid and a rotational movement with a number of pairs of brushes (scrubber brushes) can clean both sides of the wafer with contact pressure. Because the wafer becomes considerably more valuable with each successive planarizing operation, the brush cleaning operations is commercially very significant.
A brush device with gear casings disposed one above the other, between which three brush units are disposed, between which in turn a wafer can be clamped and in which the device as a whole is displaceable horizontally in relation to the wafer between a cleaning position with the clamped-in wafer and a stationary position, is known for example from German Published, non-prosecuted application DE 43 45 408 A1, which corresponds to U.S. Pat. No. 5,329,732. In this case, it is also known to connect the drive wheels, which rotate inside each gear casing and drive the rotating brushes under the upper gear casing and above the lower gear casing, respectively via a shaft, to the drive shaft of a motor via a belt gear mechanism.
Furthermore, it is known in this case to provide nozzles for deionized water (DI water) on the upper side of the upper gear casing. Moistening of the brushes is also necessary in the stationary position because they otherwise dry out and harden, which subsequently has adverse effects on the water and brushes.
However, the inadequate sealing with respect to the chemically aggressive DI water and the confinements determined by the belt drive mechanism prevent synchronous running of the brushes within a set of brushes and of the brushes assigned to one another of a brush unit. It also prevents the contact pressure from being maintained. Therefore, the known brush device is relatively temperamental. The resulting frequent failure of the brush device goes unnoticed in many cases causing batches (for example 25 wafers) to be processed further without the required cleaning. This increases defect density and, in the worst case, costs up to one percent (1%) of the yield. The frequent failures, even when they are noticed, are problematical because they cause failure times of several hours. For example, complex maintenance work is required for the repair of the toothed belts and the exchange of the bearings.
A device for polishing wafers is described in German published, non-prosecuted application DE 43 45 408 A1. The device has a number of wafer carriers disposed in a circle. Each wafer carrier is assigned a polishing device, which is driven via a shaft. The shaft is in connection via a step-down gear mechanism with an AC servomotor, which drives the shaft. The wafer carrier itself is not rotated in this case.
The abstract of JP
11-097397
A discloses a cleaning device for wafers, two brushes which lie opposite each other and work a wafer from two sides simultaneously being provided. Each of the brushes is driven by a motor of its own.
Gill Jr., et al. (U.S. Pat. No. 4,141,180) disclose a polishing device for wafers. The polishing device has two polishing surfaces disposed next to each other. Both polishing surfaces are driven via a belt by a central rotary shaft.
The abstract of JP 10-270391 A discloses a polishing device for wafers that has a plurality of brushes that are coupled to one another via toothed gearwheels.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a device for cleaning a wafer of abrasive agent suspension remaining after polishing with brushes and DI water that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that has increased service life and availability of a scrubber, a reduction in the failure times, and a minimization of the repair costs. The brush device should typically be part of a machine system virtually the size of a room, in which the semiconductor wafers, or similar items of material, are polished, transported, cleaned or otherwise processed in a number of stations. The structural design modifications should therefore fit into the overall system.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a device for cleaning a wafer of abrasive agent suspension (slurry) remaining after polishing with brushes and DI water. The device includes an upper gear casing having an upper side with an end. The upper gear casing is impervious to washing fluid.
A motor is disposed on the end and is encapsulated in the upper gear casing. A drive shaft connects to the motor running perpendicular to the upper side. An upper gear mechanism encapsulated in the upper gear casing and connected to the drive shaft includes an intermediate wheel having teeth turned by the drive shaft, an upper drive wheel having teeth intermeshed with and driven by the intermediate wheel, a shaft connected to the upper drive wheel, and a receiving plate for holding a brush connected to and driven by the upper drive wheel via the shaft. The receiving plate is disposed underneath the upper gear casing, parallel to the upper side.
A coupling connects to the drive. A lower gear casing substantially mirrors the upper gear casing. The lower gear casing receives the coupling. The lower gear casing and the upper gear casing having are fixed one above the other. A lower gear mechanism encapsulated in the lower gear casing including an intermediate wheel having teeth rotated by the coupling, and a lower drive wheel having teeth intermeshed with and rotated by the intermediate wheel and connected via a shaft to a lower receiving plate for holding brushes. The lower receiving plates are coaxial with the upper receiving plate. The lower receiving plate and upper receiving plate form a brush unit, between which a part of a wafer can be clamped and cleaned by rotating the brush unit. The lower gear mechanism turns the lower drive wheel in a same direction as the upper drive wheel.
In accordance with a further object of the invention, the device includes a moistening system for the brush units integrated into a lower casing wall of the upper gear casing. The moistening system is sealed and separated from the upper gear mechanism.
In accordance with a further object of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for cleaning a wafer of abrasive agent suspension... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for cleaning a wafer of abrasive agent suspension..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for cleaning a wafer of abrasive agent suspension... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2932737

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.