Device for changing pedal loads on a spin bike

Exercise devices – Involving user translation or physical simulation thereof – Bicycling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C482S063000, C482S065000

Reexamination Certificate

active

06491606

ABSTRACT:

BACKGROUND
1. Field of the Invention
The invention relates to exercise bicycles and in particular to pedal load changing devices for use on stationary exercise bicycles, generally called spin bikes that are used in health clubs, cycle clubs, home environments and the like.
2. Description of Prior Art
Presently there are millions of stationary exercise bikes or spin bikes used in health clubs and exercise clubs around the US and abroad. These bikes were initially developed for use by cyclists who wished to maintain a training schedule even during times when outside weather conditions and/or access to suitable outdoors cycling amenities was not available. For instance, a cyclist who is in training for a race is not always able to ride outdoors, especially at night and so spin bikes were developed to allow training to take place, during these times. These stationary spin bikes are now used both by cyclists and non-cyclists alike, for training and exercise purposes.
These bikes are however, of very basic design and limit the rider in his range of exercise options. The spin bikes supply minimal component adjustments to meet the physical needs of the rider. The spin bikes also use simple adjustment knobs connected to a friction load-generating device mounted on the front wheel, to raise and lower the loads on the pedals. These knobs are turned to change the pedal load and when a number of riders use the bike, each rider has difficulty resetting the pedal load to their own requirements, as there are generally no setting marks on the knob or on the adjacent bike surfaces. Typically many turns of the knob are needed to make a change to the pedal loads, which makes any adjustment difficult during the exercise period.
For this reason, instructors at the clubs with spin bikes have a difficult time coordinating a class of club members on spin bikes as the knobs on these bikes do not allow quick or easy changes of pedal load settings. Because of these limitations in their design, spin bikes do not allow the rider or the instructor to mimic the riding conditions of an outdoors bike or track bike.
As an example, the most popular brand of spin bike has not changed the design of its essential pedal load changing components for many years. Other competitive spin bikes have similar designs and all lack good pedal load changing features which, if present, could greatly improve the spin bike's performance and so meet the needs of a wider variety of users and health club instructors.
In the current art of spin-bikes, pedal loads are varied by turning a control knob, which changes the force on a friction pad or pads on top of, or on the sides of the front wheel, which creates changes in the pedal loads.
In the most common design of spin bike pedal load changing feature, the knob is turned and rotates a threaded rod inside a stationary threaded nut, causing the rod to move up or down. The rod is attached by a cable, or through a set of rotating arms, to two brake pads on either side of the rim of the flywheel. The length of the rod and the flex in the cable attaching it to the attendant pads, combined with the fine thread pitch on the threaded nut, requires the rider to turn the knob a large number of turns, to produce the desired change to the load on the bike pedals. This is an annoyance and does not give the rider the ability to quickly change his pedal loads during a workout.
In some of the more recent models of spin bikes the pedal load changing feature consists of a friction pad mounted on the top of the front wheel rim. Turning the control knob directly raises or lowers a threaded rod, which changes the force on the friction pad. The force is generated by turning the knob inside a square threaded nut, mounted on the spin bike frame. The threaded nut is loosely constrained from turning but can slide up or down within a limited envelope, defined by a square tube mounted on the frame of the spin bike. This sliding feature is used to integrate the emergency brake with the pedal load changing means as follows: When the rider pushes down on the top of the control knob, the entire pedal load changing means slides down and increases the force on the top of the friction pad and so the bike wheel comes to a quick stop.
Also in spin bike training there is a need by many cyclists to do one legged training exercises. This is done to improve their pedal strokes, since cycling on one leg quickly shows up the parts of the pedal stroke that are deficient as it is not masked by the other leg's contribution. A problem arises in finding a suitable and safe place to park the free leg. If held out to the side the rider runs the risk of striking it against the free rotating pedal, and if he elects to park it on part of the frame it pulls his body out of the correct cycling position. There is nothing available in the art, which addresses this problem.
There are a number of spin bike models currently being sold and used but in all cases they are limited in design and operation as described above. Basically the construction and essential features of the pedal load changing features and one legged cycling requirements on spin bikes currently in use, do not meet the physical or training needs of the riders.
There is no known prior art in the field of spin bike design that addresses the problems discussed above. The present invention overcomes these problems and in so doing, also adds new features, which improve the capabilities of a spin bike.
Thus addition of the present invention to a stationary exercise spin bike creates a bike with a good pedal load-changing feature and leg parking capability, which immediately enhances indoor spin bike exercise and training possibilities.
DESCRIPTION OF THE PRESENT INVENTION
The present invention is an advanced design of pedal load changing means and foot parking means not presently available on spin bikes currently in use. These features produce a spin bike that can more closely mimic the operational features of a road bike and also allow for advanced cycling training, using one leg.
The design of the friction device incorporated on the present invention, used to load up the pedals, can be activated about 5 times faster than on standard spin bikes, thus allowing the rider to more rapidly change pedal loads.
The invention includes an up to 10-step, simple pedal load changing means which is based on the following: There is a scale of difficulty known as the Borg Scale, well recognized by the health and fitness training business, which is a scale of perceived exertion for riding a bicycle. The top of the scale is 10 and this represents a load that is almost imporsible for the rider to turn the pedals against. The bottom of the scale is 1, which represents a very light pedal load. The pedal load changing means of the present invention mimics the Borg Scale used in general fitness evaluation and adds a very useful exercise feature to a spin bike.
To establish the Borg Scale, using the pedal load changing means on the spin bike incorporating the present invention, the rider gets on the spin bike and starts pedaling. He gradually turns a pressure-adjusting knob, which forces a friction pad downward onto the front wheel rim. This increases the load on the pedals, until he is at the highest load setting that he can handle. This is his number #10 setting. By then simply moving a load change lever down from this #10 setting, the rider can back off from his highest pedal load by increments, all the way down to a very light pedal load, which represents his #1 setting. Note that the scale has now been set up for this individual and his particular abilities, which could of course, be very different for another individual with higher or lower strength and cycling power.
The pedal load change lever has a spring-loaded ball bearing on each side, which fit into a series of holes in the two side plates adjacent to the lever. The rider can then mimic the effect of gear changes on a road bike by pushing the load change lever up or down and feel it slide into the next hole with a su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for changing pedal loads on a spin bike does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for changing pedal loads on a spin bike, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for changing pedal loads on a spin bike will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2916492

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.