Device for automatically positioning and centering a...

Image analysis – Applications – Biomedical applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S172000, C359S656000

Reexamination Certificate

active

06175642

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a device for automatically positioning the optical head of a surgical microscope relative to the operating site.
Microsurgical techniques and methods are widespread in many specialist sectors of medical science, such as neurosurgery, ophthalmology, reconstructive hand and foot surgery, etc. The common denominator is the use of an optical microscope in the operating theater for suitably magnifying the anatomical details of the part subjected to surgery.
An operating microscope consists essentially of an objective and a pair of “tube lenses”. When the object to be observed is placed in the focal plane of the objective, these lenses reproduce an intermediate image of it which can be observed and/or magnified by a pair of oculars. Tube lenses and oculars are provided as a pair to allow the object to be viewed stereoscopically.
Normally between the objective and tube lenses there is inserted a revolving turret with Galilean telescopes or a pancratic system to be able to vary, respectively discretely or continuously, the resultant total magnification of the microscope. Typical magnifications are between 5 and 50. Frequently the magnification system is operated by a motorized system, suitably controlled by a keypad.
The optical head of the microscope is completed by a coaxial illumination system for the operating field. The optical head is mechanically suspended from an articulated arm rigid with a stand rigidly connected to the ceiling or to a suitable base rigid with the floor. To be able to be freely positioned over the operating couch, the microscope is provided with a system for fine translation in the vertical direction (for focusing) and in the two horizontal directions (for image centering). Frequently such movements are effected by electric motors controlled by a pedal board available to the surgeon.
The microscope optical head can be provided with an image divider, making a further two observation channels available. It is normal practice to install an additional pair of oculars for use by a second operator and a photographic or television apparatus for acquiring visual documentation of the microsurgery.
Using a modular system it is possible in reality to install on the same microscope a number of image dividers, and to connect to each of them either an additional pair of oculars or a photographic, television or other apparatus which can be considered useful. It should be noted that the field of vision on the recording channel is usually smaller than that available to the primary operator, because of the different configuration of the optical systems forming the image. This means that the microscope objective must be centered as accurately as possible on the zone of interest to the operation. In this respect, where the surgeon is still able to “see”, it is not automatically certain that the eye of the telecamera or photographic apparatus is able to receive a sharp and reproducible image.
If the area of surgical interest leaves the field of vision of the operator, or of the recording system (for example reproduced on a monitor by a telecamera), the surgeon himself or herself, or rather one of his or her assistants, operates the translation motors to return the image of interest to the center of the field of vision. This is not always easy, and in particular could take too much time. It can hence happen that the surgeon loses vision of the field of operating interest for a few moments, with consequent obvious inconvenience, or the loss of important operating stages in the archive of photographic images or visual recording.
The fact of the area of surgical interest leaving the field of vision of the operator can have various causes. In general it can happen either because the site of the surgical treatment has effectively changed or because, although this site has remained unchanged, that part of the body on which the operation is being carried out has shifted for strictly anatomical reasons.
A typical surgical operation in which this often happens is vitreo-retinal endoscopic surgery, in which the field of operation is the rear chamber of the eyeball.
During vitreo-retinal endoscopic operations, the surgeon introduces into the eyeball not only the operating instruments but also, according to requirements, draining or infusion probes, or lighting systems such as a fiber optic endoscopic probe.
In this type of operation, the entire part on which surgery is to be carried out cannot always fall within the visual and recording field of the microscope. This is even more so the case when operating with high magnification. It often happens that the position of the microscope optical head has to be readjusted as a result of the shifting of the operation site. Again, because of the anatomy of the organ subjected to surgery (i.e. the eyeball) and of the considerable freedom of rotation of the eyeball within its socket, it can happen that although the surgery remains on the same portion of tissue, the eyeball undergoes considerable rotation within its socket, for example because of surgical maneuvers by the surgeon. This can shift the image of interest outside the field of vision.
Given the relative frequency of such movements, reiterated adjustments of the microscope position are required, to the detriment of the attention and comfort of the surgeon, in addition to the detriment of the quality of the images being acquired.
SUMMARY OF THE INVENTION
An object of the present invention is to obviate the aforesaid problems of the state of the art.
A particular object of the present invention is to provide a device to be connected to a surgical microscope which acts on the microscope optical head such as to maintain the image provided by the microscope always properly centered relative to the operating site.
These objects are attained by a device for automatically positioning and centering the optical head of a microscope for surgical use, the optical head being connected to a drive unit, characterised in that the device analyzes the image framed by the microscope objective by means of an automatic system for analyzing the image light distribution, then processes it until a reference point of the light distribution is identified, then on the basis of information regarding the position of the reference point of the light distribution it controls the drive unit of the microscope optical head.
During the operation the surgeon has available means (for example a fiber optic endoscopic probe) for illuminating, or concentrating a light beam onto, the zone in which he or one is operating. The result is that, very roughly, the site of the operation corresponds to the most illuminated zone. On the basis of this assumption the device of the present invention seeks, within the image framed by the microscope objective, the zone or point of highest light intensity, and makes that zone or point correspond to the site of the operation. Alternatively, in a preferred embodiment of the present invention, the device of the present invention calculates the position in horizontal and vertical coordinates of the luminous barycenter of the image as the parameter for locating the operating site with respect to a Cartesian reference system rigid with the microscope optical head.
The surgical microscope to which the device of the present invention can be connected must be provided with at least one image divider, so that the same image which the surgeon has before his or her eyes can be fed to an automatic image analysis system.
The automatic image analysis system can, for example, be a videocamera connected to an electronic image processing circuit or a photosensitive matrix connected to a microprocessor. The videocamera can be either in black and white, providing a standard black/white CCIR signal, or in color.
A microprocessor for processing the acquired images can be connected to the image analysis system as heretofore described. This connection can be either direct, without intermediate accessories, or an image memory device can be interposed, from which the m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for automatically positioning and centering a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for automatically positioning and centering a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for automatically positioning and centering a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2437989

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.