Device for and method of processing 3-D shape data

Image analysis – Applications – 3-d or stereo imaging analysis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S118000, C382S266000

Reexamination Certificate

active

06775403

ABSTRACT:

This application is based on applications Nos. 11-024554 and 11-159707 filed in Japan, the contents of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device for and method of processing three-dimensional (3-D) shape data for production of a model product of an object in existence.
2. Description of the Background Art
A transportable 3-D noncontact measuring device (so-called 3-D camera) as disclosed in, for example, Japanese Patent Application Laid-Open No. P09-145319A (1997) has already been introduced commercially and is currently being used for data entry into CG (computer graphics) or CAD systems, somatometry and visual recognition of robots. A common noncontact measuring method is a slit light projection method (or a light-section method), but other noncontact measuring methods such as pattern light projection, stereographic projection, and interference fringes are also known.
Currently, 3-D CG software for personal computer use and 3-D machining tools of miniature size for hobby use are commercially available. With such tools, even home users can make model products and creations with ease.
Further, a kind of vending machines that produce small photo stickers of a user's face on the spot have gained great popularity. A user just inserts coins and poses variously for a camera while watching a monitor screen. With predetermined operations, a sheet of several photo stickers is printed out to an access point. Many of the machines offer a selection of photo sizes and superimposed frames.
The above 3-D measuring device can convert the shape of various objects including a human body into data format as easily as taking a photograph. Since noncontact measurement imposes no inconvenience on a subject to be measured even if the subject is a human body, this device can be considered to be used for the production of a 3-D model product of a human face, rather than photo stickers of a human face. The 3-D measuring device in combination with a 3-D machining tool can measure a human face to produce a proper-scale model product thereof on the spot.
Unfortunately, when measuring a human face, the above-mentioned 3-D noncontact measuring device such as a range finder fails to acquire 3-D shape data regarding a region near the facial contour, a low reflectivity region such as black hair and eyebrows, and a lower jaw region which is not exposed by light for measurement, providing incomplete data. In particular, a high probability that data regarding a peripheral region of the human figure is lacking results in the acquirement of 3-D shape data regarding a human figure region smaller than the actual one.
One of the solutions to the above-mentioned problem is a method disclosed in Japanese Patent Application Laid-Open No. P06-185993A (1994). Based on the luminance level near the boundary of the background in a two-dimensional (2-D) image, this method selects 3-D shape data obtained by directing attention toward only the boundary region for a low luminance level region, and selects conventional 3-D shape data obtained using a laser radiating position detection unit for a high luminance level region, thereby providing 3-D shape data regarding a human figure region close to actual.
However, this method must acquire the 3-D shape data that directs attention toward only the boundary region in addition to the conventional 3-D data. This requires special equipment known as a boundary detection unit to produce the 3-D shape data that directs attention toward only the boundary region, leading to accordingly increased device manufacturing costs.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a device for and method of processing 3-D data which can easily produce 3-D data with a certain degree of precision.
The present invention is intended for a device for processing three-dimensional data, the device outputting desired three-dimensional data about an object based on two-dimensional image data about the object and three-dimensional range image data including range information regarding distances from a reference point for measurement to points of measurement on the object, the two-dimensional image data and the range image data being associated with each other. According to the present invention, the device comprises: means for extracting an object region from a two-dimensional image defined by the two-dimensional image data, based on a predetermined criterion; means for recognizing a no-data region, based on a range image defined by the range image data and the object region; and means for performing a data complementing process by providing data to no-data part of the range image data in the no-data region to produce complemented range image data defining a complemented range image.
In general, the range image defined by the range image data has a disposition to have a peripheral region having no data. Accurately providing data to such a no-data peripheral region requires the correct recognition of the peripheral region. On the other hand, the two-dimensional image defined by the two-dimensional image data does not have such a no-data peripheral region.
In consideration for the dispositions of the range image data and the two-dimensional image data, the device according to the present invention uses the object region obtained from the two-dimensional image data when complementing the range image data, thereby to correctly and easily recognize a region corresponding to the no-data peripheral region of the range image as the no-data region.
Consequently, the device according to the present invention can easily recognize the no-data region with high accuracy to readily provide the three-dimensional data based on the complemented range image data.
According to an another aspect of the present invention, the device comprises: means for discriminating between a preliminary object region and a background region in a two-dimensional image defined by the two-dimensional image data, based on a predetermined criterion; and means for removing a periphery of the preliminary object region to provide an object region.
The present invention can reduce the likelihood that a blurry region is present in the object region.
The present invention is also intended for a method of processing three-dimensional data.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.


REFERENCES:
patent: 5057940 (1991-10-01), Murakami et al.
patent: 5086480 (1992-02-01), Sexton
patent: 5214721 (1993-05-01), Fukuhara et al.
patent: 5592567 (1997-01-01), Kilger
patent: 5812695 (1998-09-01), Dawe
patent: 5850463 (1998-12-01), Horii
patent: 5905503 (1999-05-01), Penna
patent: 5926574 (1999-07-01), Nishikawa et al.
patent: 6424877 (2002-07-01), Kondo et al.
patent: 6-185993 (1994-07-01), None
patent: 10-277884 (1998-10-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device for and method of processing 3-D shape data does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device for and method of processing 3-D shape data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for and method of processing 3-D shape data will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3330018

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.