Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator
Reexamination Certificate
1999-10-25
2002-01-22
Evanisko, George R. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical energy applicator
C607S115000, C607S152000
Reexamination Certificate
active
06341237
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to electro-muscle stimulation, and in particular to a belt-like device which is wrapped around or otherwise placed upon a portion of the body to administer adjustable levels of electrical stimulation.
BACKGROUND ART
Electro-muscle stimulation (EMS) is well known in the medical art. This technology utilizes a conductive pad or electrode to externally apply a very weak current to a muscle or group of muscles and thereby cause them to contract. The electrode receives an electric stimulation signal from an external voltage/current source, such as an EMS machine. The stimulation signal can be adjusted in amplitude, polarity, frequency, waveform, etc. EMS is commonly used in physical or occupational therapy to strengthen atrophied muscles or paralyzed limbs, and also to exercise muscles that are immobilized for long periods of time as a result of muscular or neurological disorders, extended periods of bed rest arising from injury, surgery, or illness. EMS is also useful for the general exercise of functional muscles to improve muscle tone and strength. For example with athletes, EMS can be used to treat muscle injuries as a supplement to conventional conditioning exercises. EMS can also be used to recondition muscles or muscle groups which have, for whatever reason, lost their tone and/or strength, have been injured, or are in need of reconditioning to effect cosmetic improvements. An operator who has been trained in the principles of EMS can analyze the areas which are of concern, and select the proper muscles to exercise and train.
For example, U.S. Pat. No. 4,480,830 illustrates a method and apparatus for exercising paralyzed muscles. The method and apparatus make use of a set of transcutaneous electrodes which are placed upon the skin of the subject over muscles which are to be stimulated. A computer controlled stimulator generates a pair of alternately pulsed stimulation signals which are applied across different pairs of stimulation electrodes to produce controlled muscle contraction. Muscle movement is resisted by a dynamic load and a position sensor provides a feedback signal indicating the movement actually achieved. The computer uses the feedback signal for modifying the control signal applied to the stimulator. U.S. Pat. No. 4,499,990 shows a system and method for treating persons with paralyzed legs. The apparatus and method include four sets of transcutaneous electrodes which are placed above the iliac and quadriceps muscles of the paralyzed person. The person is seated upon an exercycle and a series of pulsed stimulation signals are applied to the electrodes to cause coordinated contraction of the iliac and quadriceps muscles. This causes pedaling of the exercycle by the paralyzed legs. A position sensor senses the position of the pedals and transmits an indication thereof to a computer which generates control signals for stimulation driving circuits connected to the stimulation electrodes. U.S. Pat. No. 4,582,049 portrays a patient initiated response method for re-educating debilitated muscle tissue. The method comprises the detection of an electromyographic signal in a muscle group which is used to trigger an artificial stimulation signal of a higher predetermined intensity and transmit such a signal to a debilitated muscle group. The patient initiated electromyographic signal may be detected in a debilitated or non-debilitated muscle group. The operator determines the frequency and intensity of the stimulation signal. U.S. Pat. No. 4,586,495 illustrates an apparatus and method for stimulating muscular activity in an acutely injured patient. A leg which is to be stimulated is strapped into a brace and the leg muscles are stimulated to work isometrically against the brace. The effort exerted by the muscles is measured by load cells which generate feedback signals for a control computer. The computer adjusts the stimulation signals in accordance with the received feedback signals. U.S. Pat. No. 4,586,510 discloses an apparatus for exercising a paralyzed limb by functional electrical stimulation. The system utilizes simple analog devices including a reference signal generator, a position sensor, and an error signal generator. The error signal is integrated to produce a stimulation driving signal for application to the stimulation electrodes mounted on the limb. In the disclosed embodiment, the paralyzed person may be seated in an exercise chair which is equipped with a pair of loading assemblies which are attachable to the legs of the person so as to yieldingly resist the stimulated movement. U.S. Pat. No. 4,724,842 shows a method and apparatus for muscle stimulation. An exercise machine or dynamometer is provided with control apparatus for ascertaining the physical position of a patient during an exercise. The patient is then electrically stimulated over selected ranges of motion in order to aid in the exercise. U.S. Pat. No. 4,785,813 consists of an apparatus for assisting muscular contraction of a partially paralyzed muscle. The system uses a pair of electrode terminals which sense voluntary EMG signals at the site of the muscle and periodically transmit appropriately corresponding higher level stimulation signals. Stimulation signals are generated by a pulsed stimulator operating under control of an amplifier arrangement connected to receive the EMG signals from the electrode terminals. A transistor switch interrupts the amplifier output in synchronism with the generation of stimulation signals. U.S. Pat. No. 4,838,272 describes a method and apparatus for adaptive closed loop electrical stimulation of muscles. The method and apparatus strengthens skeletal muscles through maximizing muscle tension in which electrical stimulation signals are applied to the selected muscles at a predetermined frequency, pulse width, and amplitude, and work output by the muscles in response to stimulation signals is determined over a fixed period of time. The work output is compared to a defined value which can be a target value or a value measured during a previous stimulation period. U.S. Pat. No. 5,070,873 includes a method of and apparatus for electrically stimulating quadriceps muscles of an upper motor unit paraplegic. Muscle fatigue of an electrically stimulated quadriceps muscle of an upper motor neuron paraplegic is detected and compensated for by monitoring the myoelectric (EMG) signal produced by the stimulated muscle and controlling one or more of the following parameters of the electrical stimulation (ES) signal: pulse repetition rate, amplitude, and pulse width. U.S. Pat. No. 5,330,516 depicts a device for generating hand function having an S-type splint consisting of a forearm portion extending along the palmar side of the forearm, a palmo-dorsal transition portion leading to a dorsal portion extending across the dorsal side of the carpal bones of the hand, and a palmar portion which touches the palm of the hand of the wearer of the device at least indirectly. A plurality of electrodes are mounted on the splint in positions in which they can make contact with skin portions directly overlying the muscles to be stimulated. U.S. Pat. No. 5,507,788 illustrates a method and apparatus for controlling skeletal muscle fatigue during electrical stimulation. Electrical stimulation signals are applied to muscles at a frequency which is varied in response to a detected ripple signal in an output tension or torque record which corresponds to the fusion of the multiple muscle contractions. An average torque amplitude is first determined when a stimulation signal is applied at an initial frequency. The amplitude of the ripple on the torque output is then determined and compared to the average torque amplitude to provide a ripple percentage. The measured ripple percentage is compared to a selected ripple percentage corresponding to the desired fusion of the multiple muscle contractions. And the stimulation frequency is adjusted by a feedback loop until the measured ripple percentage conforms to the selected value. U.S. Pat. No. 5,6
LandOfFree
Device for administrating electro-muscle stimulation and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for administrating electro-muscle stimulation and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for administrating electro-muscle stimulation and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2852061