Chucks or sockets – Socket type – Shouldered-tang holding
Reexamination Certificate
1999-03-17
2001-01-30
Bishop, Steven C. (Department: 3722)
Chucks or sockets
Socket type
Shouldered-tang holding
C279S035000, C279S036000, C279S049000, C279S080000, C279S090000, C279S103000, C279S143000, C279S904000, C408S23900A, C408S23900A, C409S234000
Reexamination Certificate
active
06179303
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to a device for accommodating a tool or a support element in a machine tool or spindle, the device comprising a tool carrier receiving member arranged at the machine tool or spindle, comprising a tool carrier having a tool receiving member for the tool as well as a clamping device for fixation of the tool carrier at the tool carrier receiving member.
Known devices for receiving a driven or stationary tool (for example, a cutting tool) or any other parts (for example, a support element for a measuring device) in a machine tool or spindle have a tool carrier receiving member which is either arranged as a separate part at the machine tool or is a part of the machine tool itself. Furthermore, a tool carrier is provided which has a tool receiving member for the tool. In order to be able to securely connect this tool carrier receiving member with the tool carrier in a permanent manner, a clamping device is provided. For this purpose, the tool carrier is divided into two areas, i.e., a first area for the tool receiving member and a second area to be received in the machine part or spindle part whereby in this second area the clamping device is arranged in the interior of the tool carrier. This arrangement of the clamping device results in the total length of the tool carrier being the sum of the two aforementioned areas. As a result of machine tools that have been recently introduced into the market and have a more limited work space the large constructive size of the tool carrier is disadvantageous.
It is therefore an object of the invention to provide a tool carrier of a short length.
SUMMARY OF THE INVENTION
As a technical solution it is suggested with the invention that the two areas of the tool carrier i.e., the tool receiving member as well as the area to be received in the tool carrier receiving member including the clamping device, are merged in the axial direction by overlapping their longitudinal areas.
This provides a tool carrier changing system of a compact design for rotating as well as stationery tools or for any other parts (for example, for a support element for a measuring device). The basic idea of the inventive tool carrier changing system is that the two areas of the tool carrier, i.e., the area for the tool receiving member and the area to be received in the machine part or the spindle part, are merged with one another. This is to be understood such that the two areas are radially spaced from one another, whereby the area for the tool receiving member is positioned inwardly, that however, in the axial direction the areas overlap. The inventive integration of the tool receiving member of the tool carrier into the area of the tool carrier receiving member results in the aforementioned advantage of a short length. This short length furthermore results in minimal torque at the interface caused by the transverse forces during machining and thus provide a very stiff basic construction. Furthermore, for the axial tool preadjustments the adjusting elements are freely accessible from the rear. Moreover, it is possible with a suitable embodiment of the clamping device to provide very high pretension. Finally, the construction makes it possible for driven tools to arrange the tool carrier receiving member below the first spindle bearing. This results in short leverage, minimal deformation and yielding. Overall, a very short device thus is provided with the tool carrier as a continuous modular tool system that allows to employ on multi spindle machines and in connection with all other machines within shortest constructive spaces to use tool changing systems with the aforementioned advantages of the known systems.
An advantageous embodiment suggests that as a clamping device a clamping ring is to be provided at the exterior of the tool carrier which engages directly or indirectly and which secures the tool carrier between it and the tool carrier receiving member. The basic principle is that the clamping device is not arranged in the interior of the tool carrier adjacent to the tool receiving member but to provide as a clamping device a clamping ring which is positioned externally at the housing of the tool carrier and thus can thus be located in the same cross-sectional plane as the tool receiving member. Accordingly, the merging of the two areas of the tool carrier is realized. The inventive device has thus three principle components, i.e., the tool carrier receiving member, furthermore, the actual tool carrier, and finally the tool carrier clamping device in connection with the inventive clamping ring. The tool carrier receiving member may have a cylindrical centering device with a planar end face stop, the tool carrier may have a centering cylinder also with a planar end face stop and a tool receiving member as well as finally the clamping ring as a fastening means. Inasmuch as the clamping ring engages directly the tool carrier, a direct mechanical contact between the clamping ring and the tool carrier is provided. An indirect engagement of the clamping ring at the tool carrier is to be understood such that an additional intermediate element is positioned between the clamping ring and the tool carrier which is transferred by the clamping ring into the securing position and is then responsible for the securing of the tool carrier between the tool carrier receiving member and the clamping ring.
An advantageous embodiment suggests that the clamping ring has a radially inwardly oriented abutment surface as a direct or indirect counter surface to a corresponding abutment surface of the tool carrier. This provides a technically simple solution in order to secure by the inventive clamping ring the tool carrier between the clamping ring and the tool carrier receiving member. In the “direct” variant the abutment surface engages directly at the corresponding contour abutment surface of the tool carrier. In the “indirect” variant intermediate elements are provided between the abutment surface of the clamping ring and the counter abutment surface of the tool carrier, as will be explained in the following.
A further embodiment for a “direct” variant suggests that the abutment surface of the clamping ring has an inner diameter that is smaller than the outer diameter of the tool carrier. The clamping ring is thus embodied relative to its radial contour such that due to the corresponding end face contour of the tool carrier the latter is forced by the clamping ring by a positive-locking connection against the tool carrier receiving member.
An “indirect” variant suggests that the abutment surface of the clamping ring has an inner diameter that is greater than the outer diameter of the tool carrier, that the abutment surface at its inner side toward the axis of the clamping ring has a slanted guide surface, and that in the area of the abutment surface of the clamping ring a securing element is arranged which, in the initial position without fixation of the clamping ring, has a greater inner diameter than the outer diameter of the tool carrier and which, after transfer of the clamping ring into the securing position has a smaller inner diameter than the outer diameter of the tool carrier. The basic principle of this “indirect” variant is that the clamping ring upon changing the tool carrier must not be completely removed but must only be loosened to such an extent that the securing element or securing elements have widened so much that the exchangeable tool carrier is released and can be removed through the front opening of the clamping ring. The abutment surface in this context is substantially conical whereby the tip of the cone is positioned on the axis of the clamping ring counter to the direction of transfer of the clamping ring into the securing position. This means that upon transfer of the clamping ring into the securing position the cross-section of the clamping ring in the area of the slanted guide surface is reduced with the effect that the securing element is moved radially inwardly, resulting in a diameter reduction.
As a secu
Bishop Steven C.
Gudrun E. Huckett Patent Agent
WTO Werkzeug - Einrichtugen GmbH
LandOfFree
Device for accomodating a tool or a support element in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device for accomodating a tool or a support element in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device for accomodating a tool or a support element in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2546554