Data processing: measuring – calibrating – or testing – Measurement system – Orientation or position
Reexamination Certificate
1999-04-30
2003-03-25
Hilten, John S. (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Orientation or position
Reexamination Certificate
active
06539328
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a device for the computerized analysis of human spinal segment mobility which includes an inclinometer disposed within a piezoelectric impulse and sensing head so that the angle of incidence of the apparatus on the spine can be measured as spinal mobility is measured and a process for interpreting the characteristics of a wave form generated from the piezoelectric sensor which is in contact with the spinal segment while an impulse is applied to the segment.
2. Description of Prior Art
A spinal “motion segment” may be defined as two adjacent vertebrae, the intervertebral disc residing between and connected to the two adjacent vertebral segments, the collateral and capsular connective tissue, proximate musculature, and the fascia and integument, all associated with the motion segment. The sensing and measuring of joint mobility of human spinal segments has been described by many practitioners skilled in the art as manually and subjectively determining spinal segment mobility relative to a written standard as well as adjacent spinal segments. In the early art form, developed by practitioners of physical manipulation of spinal segments, the practitioner would manually stabilize the spinal segments superior and inferior to the segment selected for testing of a patient who was lying on a therapy table or sitting in an erect position. While the adjacent segments were so stabilized, the integument over the spinal segment to be tested would be grasped between the thumb and forefinger of the practitioner so that the spinous process of the segment in question would be trapped within the patient's integument and between the thumb and forefinger of the practitioner. The practitioner would then attempt to move the segment, using the spinous process as a lever, and at the same time make a mental observation and comparison to a reference determined by a written standard and experience and practice on many subjects. The observations would be graded and recorded by the practitioner. Intensive professional training is required to be able to sense and grade the amount of mobility or “stiffness” of each spinal segment. Grading mobility is an art form and while one practitioner might consistently grade the mobility with a reasonable amount of accuracy and precision, additional practitioners might disagree with the mobility grading of the first practitioner. Therefore, the accuracy of the grading varied with the experience and interpretive skills of individual practitioners.
Several years ago, laboratory devices were constructed so that a subject could be positioned reproducibly on a therapy table and a lever operated transducer would be applied to the spinal segment in question and moved through a given range of motion so that the energy required to move the segment was recorded and correlated to some chosen reference standard. This method was more objective but not practical for routine practice.
In 1992, a device for testing mobility and resistance of a spinal segment was invented. The device was comprised of a piezoelectric sensor that could be positioned in series with a spinal segment where a fixed pressure could be applied through the transducer so that the integument over the segment would be compressed by a known and reproducible amount. When the required compression was achieved, a cylindrical shaped metallic body, would be accelerated to impact the side of the piezoelectric sensor opposite the spinal segment so that a force impulse would be transmitted through the transducer in series with the spinal segment to be tested. An electronic wave form, characteristic of the combined resistance of the components in series, would be elicited upon the impact. Since all of the elements in series with the spinal segment, but not the spinal segment itself, were known or fixed to some standard, the variance of the system wave form would be attributed to the resistance of the spinal segment mobility relative to the adjacent spinal segments. This is the present state of the art and science.
While the present state of the art and science with the application of piezoelectric sensing devices has resulted in significant improvement over prior art, at least one additional variable exists: the angle of incidence of the device against the spinal segment. As the angle of incidence of the device against the spinal segment varies, the captured wave form will also vary to some degree upon impulse formation. The angle of incidence depends on the skill of the practitioner. Therefore, the accuracy of this device will also vary depending on the skill of the practitioner.
Highly skilled practitioners can be accurate in determining the correct angle of incidence but other practitioners may not be able to exactly match or reproduce angles selected by their peers. It is consistent with good laboratory practice that there be a given standard i.e. “the gold standard” that is the most accurate and precise standard available at the time of the present state of the art. Therefore, in the interest of good laboratory practice and in the interest of solving the problem of the potential inaccuracy of test results, the inventors hereof have conceived of a device which removes the greatest portion of the inaccuracies of spinal segment mobility test results.
Piezoelectric percussion testing is commonly used for testing materials with critical stress reliability needs i.e. microcircuits, aircraft frames and structural components, bridge materials etc. There are engineering standards for assessing the information contained in the wave form outputs from piezoelectric sensing systems used for structural materials testing. A search of literature and prior art fails to teach a method for gathering and interpreting the information trapped in a wave form generated as a result of piezoelectric sensing of percussion testing of human spinal segments.
While the present state of the art in spinal segment mobility testing has resulted in an improvement over prior art with the application of piezoelectric sensing devices and the logging of the amplitude of the wave form output from such piezoelectric sensing devices, there is much more complexity in the differing shapes of the wave forms elicited during the mobility testing of human spinal segments. Initial experiments and demonstrations have shown that there is useful information trapped in each wave form output of a piezoelectric sensor interposed in a percussion system for testing human spinal segment mobility. No method of capturing the mathematic representations of the wave form output from the percussive testing of human spinal segments and then manipulating and interpreting such mathematic representations so as to define the amount of segmental resistance or mobility and the condition and characteristics of such segmental resistance or mobility can be found in the prior art.
SUMMARY OF THE INVENTION
I provide a device for the measurement of spinal mobility which includes an impulse and sensing head capable of determining spinal segment mobility by applying a force impulse at an angle of incidence to a spinal segment and generating a wave form characteristic of spinal mobility. An inclinometer, disposed within the head, determines the angle of incidence of the head in contact with the spinal segment in at least one, preferably three, axis. Signal generating components are attached to the data acquisition circuitry, the inclinometer, and the head so that a signal corresponding to the angle of incidence of the head at substantially the same time that the head applies an impulse, will be captured by the data acquisition circuitry. Data acquisition circuitry also captures the wave form and a signal characteristic of the force impulse.
The impulse and sensing head includes a probe, a piezoelectric sensor firmly attached to the probe, an anvil firmly attached to the sensor, an electromagnetic coil and an armature. The armature is inserted without attachment into the electromagnetic coil and configured so that whe
Becse Tamas
Cremonese Joseph G.
Crunick John B.
Laskey, Jr. Lou L.
Pretlow Demetrius
Sigma Instruments Inc.
Thorpe Reed & Armstrong LLP
LandOfFree
Device and process for measurement and treatment of spinal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and process for measurement and treatment of spinal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and process for measurement and treatment of spinal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3018242