Surgery – Miscellaneous – Methods
Reexamination Certificate
2002-02-01
2004-12-07
Woo, Julian W. (Department: 3731)
Surgery
Miscellaneous
Methods
C606S205000
Reexamination Certificate
active
06827086
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is generally directed to a device for and method of treating deleterious body tissue located within healthy body tissue by isolating the deleterious body tissue from fluid, air, and blood communication. Once isolated, the deleterious body tissue may be resected by allowing it to become ischemic and necrotic, or excised.
Cancer is a form of deleterious body tissue. Pulmonary cancer is the leading cause of cancer deaths in the United States. Early detection and proper treatment of cancerous tissue significantly improves survival rates. Asymptomatic, spherical, intrapulmonary lesions are found in about 1 of every 500 chest films. Solitary lesions having a diameter of 3 cm or less are presently defined as pulmonary nodules. Larger lesions are defined as masses. Currently, a pulmonary nodule proves to be a malignant tumor in about 40% of the cases, most often bronchogenic carcinoma but occasionally a solitary metastasis or carcinoid tumor.
A number of different procedures, techniques, and apparatus are available to treat pulmonary nodules, each having morbidity and mortality considerations that must be evaluated along with the operable risk to the patient. Any procedure involving the lungs is invasive and fraught with potential complications, including bleeding and lung air leaks. Lung tissue is very thin and fragile, and hence difficult to suture together without bleeding and air leaks. After a lung is resectioned, current procedures and techniques often restructure the remaining lung portion with suture staples.
Current techniques and related apparatus do not adequately address the potential complications caused by resectioning pulmonary tissue, particularly bleeding and air leaks. When bleeding and air leaks occur, a more invasive procedure is often indicated with possible increased morbidity and mortality. In addition, current techniques and related apparatus often unnecessarily require removal of a significant amount of lung tissue to resection a nodule, and are not as effective when a nodule is located away from an edge.
In view of the foregoing, there in a need in the art for a new and improved apparatus and method of treating pulmonary nodules that minimizes potential complications and risks of other procedures, including removal of excessive tissue, air leaks, and bleeding. The present invention is directed to such an improved apparatus and method.
SUMMARY OF THE INVENTION
The present invention provides a device for treating deleterious body tissue located within healthy body tissue. The device isolates deleterious body tissue from the healthy tissue by limiting blood, air, and fluid communication with the deleterious body tissue. The device includes a first structure having a first circumferential surface arranged to circumscribe the deleterious body tissue. The device also includes a second structure having a second circumferential surface corresponding to the first circumferential surface. When the first and second circumferential surfaces are brought together in an aligned relationship with the deleterious body tissue between the first and second structures, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue. When the first and second circumferential surfaces of the device are together in an aligned relationship, the first structure and the second structure may define a chamber arranged to contain the deleterious body tissue.
In another version of the invention, the device may include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures together in an aligned relationship. The bias element may further include bringing the first and second circumferential surfaces together with sufficient force that the deleterious body tissue becomes ischemic and necrotic. The first and second structures may each further include a first and second aperture respectively, so that when the circumferential surfaces are brought together in an aligned relationship, the first aperture and second aperture expose the deleterious body tissue for resection.
In a further version of the invention, the device includes the capability to excise the deleterious body tissue. The circumferential surface of at least one of the first and second structures of the device includes a cutting edge that resects deleterious body tissue when the first and second circumferential surfaces are brought together in an aligned relationship. One of the first and second structures of the device may also include a cutting surface arranged to engage at least a portion of the cutting edge on the other one of the first and second structures when the first and second circumferential surfaces are brought together in an aligned relationship. Bringing the cutting edge against the cutting surface resects the deleterious body tissue. The device may further include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures together in an aligned relationship with sufficient force such that the deleterious body tissue enclosed therein is resected.
In yet another version of the invention, the device may include interlocking surfaces to maintain the co-action of the circumferential surfaces to isolate the deleterious body tissue. The first structure includes a first interlocking surface, and the second structure includes a second interlocking surface. The interlocking surfaces are arranged to interlock with the deleterious body tissue between. Upon bringing the first and second circumferential surfaces together to a point of interlocking, the circumferential surfaces of the first and second structures will compress tissue surrounding a perimeter of the deleterious body tissue enclosed therein with sufficient force such that the deleterious body tissue will be isolated from communication with the healthy body tissue, and become ischemic and necrotic. The interlocking surfaces may be urged together by an external force. The first structure and the second structure may define a chamber arranged to contain at least the pulmonary nodule when the interlocking surfaces are interlocked. Further, the device may include a bias element coupled to the first structure and the second structure that brings the first structure and second structure together in the aligned relationship.
In another version of the invention, a device is provided that includes two structures that move together in a shearing manner and that compress the deleterious body tissue between to limit blood, air, and fluid communication. The device includes a first structure having a first partial circumferential surface, and a second structure having a second partial circumferential surface corresponding to the first circumferential surface. The first and second partial circumferential surfaces are arranged to encircle the deleterious body tissue when the first structure and the second structure are brought toward each other in a shearing manner with the deleterious body tissue encircled between the first and second partial circumferential surfaces. When brought together in this manner, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communicating with the healthy body tissue. The device may include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures toward each other in the shearing manner with sufficient force such that deleterious body tissue enclosed therein becomes ischemic and necrotic.
In still another version of the invention, a method is provided for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood, air, and fluid communication with the deleterious body tissue. The method includes several steps. One step includ
Knobbe Martens Olson & Bear LLP
Sam Charles H.
Spiration, Inc.
Woo Julian W.
LandOfFree
Device and method of isolating deleterious body tissue... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method of isolating deleterious body tissue..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method of isolating deleterious body tissue... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3281196