Surgery – Instruments – Surgical mesh – connector – clip – clamp or band
Reissue Patent
1999-04-26
2001-03-20
Jackson, Gary (Department: 3731)
Surgery
Instruments
Surgical mesh, connector, clip, clamp or band
C606S153000
Reissue Patent
active
RE037107
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device and method for surgically joining severed small tubular structures.
2. The Prior Art
It is presently possible to surgically join small tubular structures, for example, severed arteries smaller than 5.0 millimeters (mm) in size, and even less than 1.0 mm in size. However, considerable surgical dexterity is required. If reunification of a patent conduit with normal or nearly normal flow is to be achieved, great pains must be taken to insure gentle handling of delicate tissues, particularly avoiding unnecessary stretching, crushing, or piercing of the tissues. Such trauma increases the likelihood of thrombosis and/or structural failure.
Anastomosis of small tubular structures is preferably performed under a microscope to aid in visualization. In the case of end-to-end anastomosis, the severed vessels are gently clamped so as to interrupt flow and to make the ends available for suture. An initial suture is installed to connect the ends together at a single point. This initial suture is usually positioned at the anatomically deepest aspect of the anastomosis, a position which is generally referred to as the “back wall” or “posterior wall” of the anastomosis. Additional sutures are then placed to join additional points of the separated ends.
A number of factors contribute to the difficulty of performing this procedure:
(a) Loss of configuration. When tubular structures, such as blood vessels, are emptied of their pressurized contents (such as blood), the tubular lumen collapses and the tubular shape is lost. The ends of such severed, collapsed structures are difficult to visualize in their previously intact configuration or their preferably restored configuration. They are also difficult to grasp and manipulate in order to suture.
(b) Trauma from instrumentation. In placing sutures through the vessel wall, the suture needle is passed through the wall either from outside to in or from inside to out. To facilitate passing a suture needle inward towards the lumen, an instrument, such as a small forceps, is typically inserted into the lumen in order to provide counter pressure to the thrust of the suturing needle, as well as to attempt to separate the wall being sutured from the wall behind it. Alternatively, the surgeon may be required to grasp the full thickness of the wall being sutured with a forceps in order to position it so that it may be pierced by the suturing needle. This requirement for forceps to grasp and manipulate the dissociated structures introduces an unwanted element of tissue trauma.
(c) Inadvertent misplacement of sutures. With tubular shapes, especially those of small diameter, the opposite wall from the point being sutured might be inadvertently pierced or traversed in the line of the thrust of the suturing needle, especially in placing sutures through the vessel wall from outside to in, toward the lumen. This is especially so because of the lumen being collapsed. Not only might tissues of the opposing wall be traumatized, but the lumen may be inadvertently sutures shut. The conventional use of a forceps either to exert counter-pressure on the vessel wall for counter pressure for the suture needle thrust, or to grasp the wall, does not fully protect the opposite wall from inadvertently being caught in the suture or traumatized by the suture needle.
(d) Spasm of the vessel. Trauma to the vessel may cause it to spasm, adding a complicating factor in performing these procedures.
(e) Time for performance. The present methods of performing anastomoses are time consuming. Surgical risk, particularly anesthetic risk, is known to be increased with time.
(f) Operator fatigue. The intense concentration, effort and time required by the present methods contribute to frustration and fatigue.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a device and method for surgically joining severed small tubular structures that minimizes the problems associated with methods of the prior art. It renders the process less technically demanding, decreases tissue trauma associated with grasping and manipulating tissues, diminishes the occurrence of inadvertent piercing trauma in the line of suture needle thrust, facilitates speed, and decreases operator fatigue.
The basic device of the present invention has a generally cylindrical shape that includes a pair of insertion arms and a central depression. The depression leaves a bridge connecting the arms. The arms have free extremities that are preferably convexly rounded or tapered for ease in inserting the device into the tubular structure. The arms are smooth, coated with a lubricant, and/or composed of a material that retains moisture for ease in insertion. The lengths and/or cross-sections may be the same or different between the two arms as may be needed for particular applications. The cross-section may be round, oval, or such other desired shape. The arms may be solid or may include an axial bore. The arms are preferably constructed of a relatively firm material that is biologically compatible.
The depression provides a space for the needle to move through within the tubular structures while simultaneously the edge of the depression provides support so that the needle thrust does not collapse the wall. The depression may be configured to guide the path of the suture needle.
The configuration of the depression generally determines the configuration of the bridge, with some possible variations. For example, the bridge may be straight or curved, depending upon the desired final shape of the anastomosis. It may have a different cross-section than that of the arms.
Along with connecting the arms, one purpose of the bridge is to prevent the needle from inadvertently coming in contact with the wall opposite that of the wall being sutured. Preferably, the bridge is composed of a material that is difficult for the needle to penetrate and that is relatively flexible so that the device can be more easily removed from the tubular structures when no longer needed.
Examples of suitable materials for the device include polypropylene, dacron polyester, nylon, Teflon and polytetra-fluoroethylene (PTFE). Where resorbtion might be desired, the polyglycolic materials Vicryl and Dexon are suitable. The present invention also contemplates that the colors of the device may be vary depending upon a particular application. Optionally, the material of the device is radioopaque, in whole or in part, for the purpose of locating the device radiologically. Optionally, the material of the device is magnetized, in whole or in part, for the purpose of locating the device if lost in the surgical field.
The present invention also contemplates that the device contain or be coated with additional materials to accomplish supplemental objectives, such as clot prevention, spasm prevention and infection prevention.
Optionally, the device includes a means for being inserted and removed and/or manually rotated while residing in the tubular structure. One such means includes a grasping ridge within the bridge and a grasping tool configured to the shape of the ridge. A second such means includes an axial concavity in each arm into which feet of a grasping tool are inserted.
In the method of the present invention, that of an anastomosis of tubular structures, the first step is to put an initial suture on the back wall of the anastomosis. Then the device is inserted into the openings of the two structures by either inserting the device completely into one structure and sliding back into the other until in the working position, or by folding the device at the bridge, inserting each arm into the openings of the tubular structures, and allowing the device to straighten out into the working position. In the working position, the depression straddles the openings of the tubular structures. Next, the needle pierces one wall adjacent to the depression. Optionally, the edge of the depression is designed to exert a counter pressure to the wall so that the thrust of the ne
Jackson Gary
Morse, Altman & Martin
Surgical Innovations LLC
LandOfFree
Device and method for the surgical anastomasis of tubular... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for the surgical anastomasis of tubular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for the surgical anastomasis of tubular... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2435325