Electric heating – Metal heating – By arc
Reexamination Certificate
2000-10-13
2002-11-26
Evans, Geoffrey S. (Department: 1725)
Electric heating
Metal heating
By arc
C219S121680, C219S121690
Reexamination Certificate
active
06486435
ABSTRACT:
The invention relates to a device and a method for structuring the surface of floor coverings which have already been laid. With this method and device, it is possible to provide virtually any materials used for floors with structures on their upper, preferably smoothed surface, these structures increasing and improving the nonslip properties and, if appropriate, the aesthetic appearance.
Various methods are known for increasing the nonslip properties of floors in which the surface is machined or influenced by wet-chemical means, in order to influence the nonslip properties of floors, in particular made from natural stone, artificial stone, plastics or other plastics-sealed or coated coverings of the desired form.
In addition, DE 195 18 270 C1 has described a nonslip floor covering and a method for producing it. A floor covering of this type, which is to have a highly polished surface, is provided with lenticular and sharp-edged microcraters by pulsed laser firing, the intention being that the microcraters should have a sucker action and these microcraters being made in a size which means that they are not visible to the human eye. The microcraters are to be randomly distributed and produced in an irregular arrangement. These microcraters are said to increase the coefficient of friction of a floor covering of this type to over 0.4.
This prior publication reveals that the microcraters are to be formed on the surface of in particular mineral floor covering materials in a stationary installation by means of a pulsed Nd:YAG laser. Consequently, it is only possible for suitably treated coverings to be fitted in new buildings or as newly laid floors, while the potential danger which exists on floors which have already been laid remains. Moreover, it is customary for floor coverings which have already been laid to be remachined, i.e. ground down after prolonged periods, in particular in the case of stone floor coverings, in order to restore the visual appearance and, in particular, the shine. This naturally leads to the desired effect of the microcraters, as a result of their dimensions in terms of shape and depth being at least reduced, being eliminated together with the desired nonslip effect.
Furthermore, Wo 97/48536 A1 describes how various jointing materials and mortars can be removed from joints between tiles and bricks by means of laser beams using a mobile unit. The mobile unit with a housing can be moved both manually and using a robot. To effect the movement, wheels are present on the housing by means of which a laser beam in protected form is directed onto the jointing material to be removed, which is situated in joints between tiles, for example, and is to be removed again.
Therefore, the object of the invention is to propose a possible solution for providing floor coverings which have already been laid with a structure on their surface, which structure at least increases the nonslip properties on the surface even when a slip-promoting medium, such as for example water, is present.
According to the invention, this object preferably is achieved by means of the characterizing features of the invention. Advantageous embodiments and refinements of the invention will be apparent from the description provided herein.
The device according to the invention and the corresponding method can be used for virtually any floor coverings which consist of a very wide range of materials, and shaping the one or more laser beam(s) are accommodated.
According to the invention, it is possible to use laser light sources which operate either continuously or in pulsed manner. In this context, it is certainly expedient to use a continuously operating laser beam if linear structures are to be formed in the surfaces of the floor covering and to use a pulsed laser beam if punctiform structures are to be formed. The appropriate laser light source may be selected appropriately according to the floor covering material and in particular taking into account its absorption properties for the wavelengths of the laser used.
In addition to CO
2
lasers, these lasers include Q-switched pulsed lasers, such as an Nd:YAG laser, which is preferably diode-pumped.
To guide and shape the beam, it is possible to use optical elements which are known from laser technology, such as mirror systems, beam-widening lenses, planar field optics, scanners or polygon wheels, these optical elements preferably being designed or arranged in such a way that it is possible to control in particular the laser beam intensity on the surface of the floor covering. Systems of this type are known from laser marking.
It is particularly advantageous to use optical fibers to transmit the laser beam or a plurality of laser beams from one or more laser light sources to the point of action. This is particularly expedient if the device comprises a plurality of parts and that part of the device in which the laser light source together with the additional components required for its operation, such as for example the cooling system and the power supply, are separated from the mobile part of the device. Designing the device according to the invention in this way is particularly advantageous for machining steps, since the flexibility and ease of handling of the mobile part of the device which contains the elements for guiding and shaping the laser beam(s) can be made correspondingly small both in terms of mass and in terms of volume.
In this case, this mobile part may have its own drive, by means of which it can be moved at a predeterminable speed over the surface to be structured, so that deflecting the laser beam(s) in only one dimension is sufficient to form the desired structure pattern on the surface of the floor covering. In addition, however, it is possible to carry out a speed measurement, for example using an undriven wheel, as is known from Pei&bgr;ler, and to take the speed measurement signal into account when controlling the laser beam. If the device according to the invention is designed in this way, it is possible to achieve continuous operation. The procedure should be similar for manual operation without a dedicated drive for the mobile part.
However, the procedure using the invention may also involve certain areas of the surface being structured one by one, after the mobile part has been suitably positioned, in a so-called step-by-step process. In this case, it is necessary to deflect the laser beam in two dimensions. A procedure of this nature is recommended in particular when a floor covering which is to be treated accordingly, comprising individual elements (slabs) of virtually identical dimensions which are separated from one another by joints, is to be structured.
To control the movement or the positioning of the mobile part, it is possible to provide a guidance, navigation and/or image-processing system on the mobile part of the device according to the invention, which may be operated in conjunction with an electronic data-processing unit. An electronic data-processing unit of this type can store corresponding data about the dimensions, geometric configuration and material of the floor covering, and this data can be taken into account for controlling the movement of the mobile part of the device according to the invention and the laser intensity. Moreover, an electronic control unit of this nature can also be used to influence the shape and dimensioning of the structure formed on the surface of the floor covering. It is therefore readily possible to design structuring in the form of microcraters which act as displacement space for slip-promoting media of a size which is not visible to the human eye at a distance of at least 1 meter and therefore scarcely affects the visual appearance of the surface.
However, to achieve the desired nonslip effect, the structuring does not have to be formed over the entire surface of the floor covering, but rather it is possible to form structured regions in the form of a raster, in which structured areas are separate from unstructured areas. The shape of the structured areas may, for example, be
Beyer Eckhard
Hauptmann Jan
Wiedemann Günter
Evans Geoffrey S.
Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung
Leydig , Voit & Mayer, Ltd.
LandOfFree
Device and method for structuring the surface of floor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for structuring the surface of floor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for structuring the surface of floor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2948153