Surgery – Instruments – Orthopedic instrumentation
Reexamination Certificate
2000-06-30
2003-03-25
Wilson, John J. (Department: 3732)
Surgery
Instruments
Orthopedic instrumentation
Reexamination Certificate
active
06537279
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a device for insertion into a disc space between adjacent vertebral bodies in the human spine, and a method of working on those portions of the vertebral bodies adjacent that disc space to remove bone material and thereby access vascular bone. The device and associated method forms a surface on each of the vertebral body surfaces that are adjacent the intervertebral disc space, either sequentially, or in an alternative embodiment, simultaneously. The formed surface(s) have a shape and a contour corresponding to an interbody spinal insert to be implanted in the disc space.
BACKGROUND OF THE INVENTION
Inserts for placement between adjacent vertebrae in the spine come in a variety of shapes and sizes and are made of a variety of materials. Such inserts may or may not be designed to promote fusion of the adjacent vertebral bodies. Inserts not intended to participate in or to promote fusion of the adjacent vertebrae, for example an artificial spinal disc, are intended to maintain the spacing between the adjacent vertebrae and to permit relative motion between those vertebrae. Such inserts may or may not include some type of surface treatment or structure designed to cause the vertebrae to attach and grow onto the surface of the insert to thereby stabilize the insert. Another type of insert comprises bone grafts. Such bone grafts are typically intended to participate in and to promote fusion of the adjacent vertebrae. Another type of insert for use in human spinal surgery comprises implants made of selected inert materials, such as titanium, that have a structure designed to promote fusion of the adjacent vertebrae by allowing bone to grow through the insert to thereby fuse the adjacent vertebrae. This last type of insert is intended to remain indefinitely within the patient's spine.
The first known example of this last type of insert (for use in humans) is described in U.S. Pat. No. 5,015,247, which, in its preferred embodiment, discloses a hollow, threaded, cylindrical, perforated fusion implant device made of a material other than and stronger than bone and which is intended to cause fusion of adjacent vertebral bodies. A fusion promoting material, such as cancellous bone for example, is packed within the hollow portion of the implant and participates in the fusion. As used herein, the term fusion defines the growth of bone tissue from one vertebral body across a disc space to an adjacent vertebral body to thereby substantially eliminate relative motion between those vertebrae.
Human vertebral bodies are comprised of a hard outer shell of cortical bone (sometimes referred to as the cortex) and a relatively softer, inner mass of cancellous bone. Just below the cortical bone is a layer referred to as the subchondral plate. The outer shell of cortical bone that is adjacent the disc and the underlying subchondral plate are together herein referred to as the “end plate” and, for the purposes of this application, is hereby so defined to avoid ambiguity. The spinal disc that resides between adjacent vertebral bodies maintains the spacing between those vertebral bodies and, in a healthy spine, allows for relative motion between the vertebrae. At the time of surgery, for example in the instance where fusion is intended to occur between adjacent vertebral bodies of a patient's spine, the surgeon typically prepares an opening at the site of the intended fusion by removing some or all of the disc material that exists between the adjacent vertebral bodies to be fused. Because the outermost layers of bone of the vertebral end plate are relatively inert to new bone growth, the surgeon must work on the end plate to remove at least the outermost cell layers of bone to gain access to the blood-rich, vascular bone tissue within the vertebral body. In this manner, the vertebrae are prepared in a way that encourages new bone to grow onto or through an insert that is placed between the vertebrae.
Present methods of forming this space between adjacent vertebrae generally include the use of one or more of the following: hand held biting and grasping instruments known as rongeurs; drills and drill guides; rotating burrs driven by a motor; and osteotomes and chisels. Sometimes the vertebral end plate must be sacrificed as occurs when a drill is used to drill across the disc space and deeper into the vertebrae than the thickness of the end plate. Such a surgical procedure necessarily results in the loss of the hardest and strongest bone tissue of the vertebrae—the end plate—and thereby robs the vertebrae of that portion of its structure best suited to absorbing and supporting the loads placed on the spine by everyday activity. Nevertheless, the surgeon must use one of the above instruments to work upon the adjacent end plates of the adjacent vertebrae to access the vascular, cancellous bone that is capable of participating in the fusion and causing active bone growth, and also to attempt to obtain an appropriately shaped surface in the vertebral bodies to receive the insert. Because the end plates of the adjacent vertebrae are not flat, but rather have a compound curved shape, and because the inserts, whether made of donor bone or a suitable implant material, tend to have a geometric rather than a biologic shape, it is necessary to conform the vertebrae to the shape of the insert to be received therebetween.
It is important in forming the space between the adjacent bone structures to provide a surface contour that closely matches the contour of the inserts so as to provide an adequate support surface across which the load transfer between the adjacent bone structures can be evenly applied. In instances where the surgeon has not been able to form the appropriately shaped space for receiving the inserts, those inserts may slip or be forcefully ejected from the space between the adjacent vertebrae, or lacking broad contact between the insert and the vertebrae, a failure to obtain fusion may occur.
Furthermore, no known prior art device for preparing the vertebral end plates to receive an insert includes a working element that corresponds in shape, size, or contour to the shape of the insert to be implanted. That is, the known devices must be moved from side to side and in and out within the intervertebral space by an amount that exceeds the dimensions of the working element of the device, e.g., the rotating burr of a motor driven routing instrument or the working end of known osteotomes and chisels.
OBJECTS OF THE PRESENT INVENTION
It is an object of the present invention to provide a device and method for quickly, safely, effectively, and accurately working upon a vertebral body end plate adjacent a disc space so as to, while preserving that end plate at least in part, remove bone to produce a receiving surface corresponding in size, shape, and contour to an insert to be implanted between the adjacent vertebrae.
It is a further object of the present invention, in at least certain embodiments, to provide a device capable of simultaneously working upon both of the vertebral body end plates adjacent a disc space to produce opposed receiving surfaces in the adjacent end plates corresponding in size, shape and contour to an insert to be implanted, and in so doing to define the shape to the insert space.
It is a further object of the present invention to provide a vertebral interspace preparation device that, in a preferred embodiment, is capable of working with linear insertion, i.e., insertion along a single axis, and without the need to substantially move the device from side to side within the disc space along a second axis. In such a preferred embodiment, the device has at its working end an abrading element having a width generally corresponding to the width of the insert to be implanted.
It is a further object of the present invention to have a safety mechanism built into the device that limits the depth of insertion of the device into the spine.
It is a further object of the present invention to provide a vertebral interspace preparation de
Doan Robyn Kieu
Martin & Ferraro LLP
Wilson John J.
LandOfFree
Device and method for preparing a space between adjacent... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for preparing a space between adjacent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for preparing a space between adjacent... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3077361