X-ray or gamma ray systems or devices – Auxiliary data acquisition or recording – Distance or dimension marker
Reexamination Certificate
2002-09-13
2004-11-30
Church, Craig E. (Department: 2882)
X-ray or gamma ray systems or devices
Auxiliary data acquisition or recording
Distance or dimension marker
C378S162000
Reexamination Certificate
active
06826257
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to devices for marking radiography specimens, and in particular to devices that indicate the orientation of the specimen in a patient's body prior to removal. The present invention further relates to radiographic markers that will remain secured to specimens during manipulations accompanying radiography and pathology.
BACKGROUND INFORMATION
Radiologists frequently use markers that absorb xrays and cast an image when placed within an xray field to convey pertinent information on xray film. For example, right and left markers are routinely used to designate the anatomical orientation of the patient or to identify a particular extremity being examined. These types of markers are often placed on the surface of the examination table or xray film cassettes, within the exposure field but outside the image of the patient, to define the patient's physical orientation in relationship to the xray beam or the film.
Markers consisting of a radiopaque body and adhesive can be attached directly to the skin of patients. These markers give the radiologist a specific target for the xray and, since the radiopaque body will appear on radiographs later taken, help pinpoint the location of the area in question when reading the developed film. Some markers have been developed that can be inserted into the body to mark tissues or organs that require repeated xray monitoring. These types of markers are manufactured as staples or hooks (to attach to tissues), and even partial rings (to encircle grafted veins).
All of the previously described devices, while useful for specific purposes, have not been ideal for marking specimens removed from patients, as the described devices fail to address circumstances particular to specimen removal, radiography, and pathology. Successful removal of tumors from a patient's body requires an accurate evaluation of the excised tissue boundaries. To ensure that the entire tumor is removed, an adequate amount of healthy tissue surrounding the tumor is also extracted. The success of the surgery and the patient outcome is directly related to resection of the entirety of the tumor with an adequate healthy tissue boundary. For example, successful removal of breast tumors requires an accurate evaluation of the removed tissue boundaries to see if the tumor has effected the surrounding healthy tissue.
In the case of biopsies, a specimen is marked by the surgeon during removal from the patient. This mark aids the radiographers and pathologists in identifying the orientation of the specimen as it was present in the patient's body. Permanent marking of the exact orientation of the specimen is critical because of the manipulations—specimens must be pressed flat to properly xray—that take place during radiography. Presently, a surgeon may mark a tissue specimen by attaching sutures of various lengths, colors, or number combinations. The lengths, colors, or number of sutures convey to the pathologist the orientation of the gross pathology specimen in the patient's body. Unfortunately, this process of suturing and knotting may not be regularly performed because it is time consuming and requires detailed oral and/or written communications between surgeons, radiologists, and pathologists which can result in frustrations between the three professionals. Additional confusion may arise due to the fact that there is no standard marking method in the medical profession, since each surgeon develops his or her own method of marking.
Some radiopaque markers have been developed to address this problem, but still have some shortcomings. For example, existing markers can be attached to specimens by securing the markers with a clamping pair of pinchers, but these markers may release while the specimen is being radiographed and otherwise examined, and thus, the benefit is lost. Also, because such existing markers have sliding components and locking points, they tend to be thicker and larger than ideal. Since specimens must lay flat for proper radiography and pathology, a large, thick marker may obscure subtle pathology within the specimen. While the simple solution to this problem would be to decrease the marker size, if the marker is too small, it may be virtually impossible to hold while securing to a specimen. Existing devices also fail to standardize the method of marking specimens, thereby perpetuating the confusion and misinterpretation between the surgeon removing the specimen and the pathologist studying the specimen.
Accordingly, it is an object of the present invention to overcome the above-described drawbacks and disadvantages of existing markers.
SUMMARY OF THE INVENTION
The present invention is directed to a device for marking the margins of radiography specimens. The device includes a base and a plurality of markers detachably connected to the base. The base allows a user to easily grip the device while securing the small individual markers to a specimen. The base can take many forms from which the individual markers extend outwardly to facilitate attachment of the markers to specimens. The markers preferably include at least one aperture for receiving sutures, staples, or the like, which are used to secure the markers to specimens. After a marker is secured to a specimen, it can be broken away from the base of the device, thereby remaining secured to the specimen during radiography and pathology. The markers define distinctive, radiopaque marking indicia and/or shapes. The indicia (and/or the shapes of the markers themselves) are visible in a radiograph and indicate orientation of the specimen before the specimen was removed from the body.
One advantage of the present invention is that the device may standardize the marking system used to indicate the orientations of specimens, thereby eliminating confusion between the different medical professionals involved in treatment. Another advantage is that the device may remain fixedly secured to specimens during radiography because the device can be attached to a specimen with a suture, staple, or like connecting means, rather than relying on any pinching or squeezing elements that can accidentally release. Still another advantage is that the base of the device itself may be configured to be easily gripped during use, even though the markers themselves may be relatively small (so as to limit the amount of obstruction during x-ray). Yet another advantage is that the device may be able to retain multiple markers with various indicia, wherein one or more of the markers may be usable for the same or multiple specimens. Additionally, the device may be readily adaptable to mark all types of specimens and orientations.
These and other features and advantages of the invention are more fully disclosed or rendered apparent from the following detailed description of certain preferred embodiments of the invention, that are to be considered together with the accompanying drawings.
REFERENCES:
patent: 4041931 (1977-08-01), Elliott et al.
patent: 5474569 (1995-12-01), Zinreich et al.
patent: 5640438 (1997-06-01), Talluto et al.
patent: 5702128 (1997-12-01), Maxim et al.
patent: 5902310 (1999-05-01), Foerster et al.
Bober Stewart
Sayre James
Beekley Corporation
Church Craig E.
McCarter & English LLP
Yun Jurie
LandOfFree
Device and method for margin marking of radiography specimens does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for margin marking of radiography specimens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for margin marking of radiography specimens will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3316483