Abrading – Abrading process – With tool treating or forming
Reexamination Certificate
2000-06-26
2001-12-11
Banks, Derris H. (Department: 3723)
Abrading
Abrading process
With tool treating or forming
C451S443000, C451S449000
Reexamination Certificate
active
06328636
ABSTRACT:
TECHNICAL FIELD
The present invention relates to machining apparatus and process in which a cold-gas-blow cooling is used.
BACKGROUND ART
JP-A-60-25653 discloses a grinding apparatus wherein a load current of an electric motor for rotating a grinding wheel is measured so as to determine a point of time at which the grinding wheel is to be dressed. The grinding resistance increases as the grinding wheel becomes dull, resulting in an increased load applied to the grinding wheel and the consequently increased amount of heat generation. The increased load applied to the grinding wheel or the increased amount of heat generation causes changes in the hardness, residual stress and other mechanical properties of a workpiece subjected to the grinding operation. In this view, where the grinding wheel has become dull to a certain extent, the grinding wheel is dressed so as to restore its original sharpness. However, in the grinding apparatus disclosed in JP-A-60-25653 in which the point of time of the dressing operation is determined on the basis of change of the measured load current of the electric motor for rotating the grinding wheel, the determined dressing time does not always coincide with a dressing time suitable for the workpiece.
On the other hand, if the hardness and residual stress of the workpiece are directly measured, it would be possible to determine the dressing time suitable for the workpiece, on the basis of the measured hardness and residual stress. However, the hardness and the residual stress of the workpiece cannot be measured while the grinding operation is in process. The workpiece has to be removed from the machining apparatus, so that the hardness and the residual stress are measured by measurement devices which are independent of the machining apparatus. Since the workpiece has to be removed from the machining apparatus, the working efficiency is problematically reduced. Further, although the hardness and the residual stress of each workpiece are measured simultaneously with the grinding operation for the next workpiece, the measurement of the residual stress generally requires a long time, resulting in a delay in the point of time of the dressing operation and a risk of producing some defective products.
Such a problem arises also in a cutting operation. When the cutting tool becomes dull, the surface smoothness of the workpiece is deteriorated. Further, the cutting resistance increases thereby resulting in increased elastic deformation of the workpiece and the cutting tool, or increased thermal expansion of the workpiece and the cutting tool due to increased amount of heat generation. Either one of the increased elastic deformation and the increased thermal expansion causes deterioration in the machining accuracy. In view of this, it is preferable that the cutting tool be re-ground at a time suitable for the workpiece, so that the cutting tool restores its original sharpness at the time suitable for the workpiece.
The above-described problems are important particularly in a machining process with cold-gas-blow cooling. In the machining process with cold-gas-blow cooling, a blow of cold gas (a stream of a gas having a low temperature) is used instead of a cutting or grinding liquid or other liquid coolant, so as to be applied to a machining point at which the workpiece is machined by the machining tool, thereby cooling the machining point, as described in, for example, JP-A-56-9166. This machining process has recently begun to be practiced in view of freedom from splashes of the liquid coolant, easier recycling of the cutting chips, and other advantages thereof. However, since the gas has a lower thermal conductivity and a smaller thermal capacity than those of the liquid, the machining tool and the workpiece tend to be insufficiently cooled in this machining process. Thus, the increased amount of heat generation derived from the deterioration of the sharpness of the machining tool is likely to affect the mechanical properties of the workpiece and the machining accuracy. Therefore, it is particularly important that the dressing of the grinding wheel, the re-grinding of the cutting tool, or other rectification of the machining tool be executed at the time suitable for the workpiece.
DISCLOSURE OF INVENTION
The object of the present invention is to permit rectification of a machining tool at a point of time suitable for the workpiece in a machining process with cold-gas-blow cooling. This object may be achieved by a machining apparatus or process according to any one of the following modes of the present invention, which are numbered and dependent from each other, where appropriate. It is to be understood that the following modes are provided to facilitate the understanding of the present invention, and that the technical features and the combinations of the technical features disclosed in the present specification are not limited to the following modes.
(1) A cold-gas-blow-cooling type machining apparatus in which a cold gas blow is provided to cool a machining tool and a workpiece while the workpiece is machined by the machining tool, the machining apparatus being characterized by comprising:
a rectifying device which rectifies the machining tool;
a workpiece-temperature detecting device which detects a temperature of the workpiece; and
a rectifying-device control device which controls an operation of the rectifying device on the basis of the temperature of the workpiece which is detected by the workpiece-temperature detecting device.
In the cold-gas-blow-cooling type machining apparatus of the present mode, the operation of the rectifying device is controlled on the basis of the temperature of the workpiece. As described above, where the cold gas blow is used for cooling the machining tool and the workpiece, deterioration of the sharpness of the machining tool affects the temperature of the workpiece more considerably than where a liquid coolant is used. Where the rectifying device is controlled on the basis of the temperature of the workpiece, the machining tool is rectified at a point of time suitable for the workpiece, so that the sharpness of the machining tool is restored at the suitable time, making it possible to reduce the number of defective products due to inadequate rectification of the machining tool.
The rectifying-device control device may include, for example, a machining-condition lightening portion which reduces a relative movement velocity of the machining tool and the workpiece, and a depth of cut per pass, by respective predetermined amounts, each time the detected temperature of the workpiece rises to a predetermined temperature, and a rectifying-operation command portion which commands the rectifying device to perform a rectifying operation when the relative movement velocity or the depth of cut is reduced to a predetermined velocity or depth of cut. (It is noted that each of the above-described predetermined amounts may be constant, or alternatively may be changed depending upon the situation. In the latter case, each of the predetermined amounts may be larger where the detected temperature rises to the predetermined temperature a short time after the detected temperature rose to the predetermined temperature last time, than where the detected temperature rises to the predetermined temperature a long time after the detected temperature rose to the predetermined temperature last time.) That is, the rectifying-device control device may be adapted to thus control the rectifying device indirectly on the basis of the detected temperature of the workpiece. Further, alternatively, the rectifying-device control device may be adapted to control the rectifying device directly on the basis of the detected temperature of the workpiece. One example of the latter case is recited as mode (2) described below.
(2) A cold-gas-blow-cooling type machining apparatus according to mode (1), wherein the rectifying-device control device includes a rectifying-operation command portion which commands the rectifying device to rectify the machining tool when the
Kobayashi Yasunori
Kubo Yuji
Kumazawa Tadashi
Matsumoto Masanori
Mukai Ryohei
Banks Derris H.
Burns Doane , Swecker, Mathis LLP
Toyota Jidosha & Kabushiki Kaisha
LandOfFree
Device and method for machining in which cool air cooling is... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Device and method for machining in which cool air cooling is..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for machining in which cool air cooling is... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2596195