Device and method for hydrating and rehydrating orthopedic...

Special receptacle or package – For mixing – Means to manipulate without rupture

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C206S438000, C206S524800

Reexamination Certificate

active

06648133

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to orthopedic materials and packaging therefor, and more particularly to a device and method for hydrating and/or rehydrating orthopedic graft materials, such as allograft materials, xenograft materials, and synthetic materials. Specifically, a vacuum package system is provided for dehydrated, e.g., freeze-dried, orthopedic graft materials, as well as dry porous orthopedic graft materials, e.g., calcium-phosphate-based materials, which allows for liquid materials to rapidly and thoroughly infuse within the pores of either type of orthopedic graft material so as to form hydrated and/or rehydrated orthopedic graft materials.
BACKGROUND OF THE INVENTION
Allografting is one of the most widely used orthopedic transplantation techniques currently being used by orthopedic surgeons. Its main use is in the field of revision joint replacement, particularly total hip replacement, although its use is also widespread in the treatment of many different types of bone defects as well.
An allograft is generally defined as a graft of tissue, such as bone tissue, from a donor of one species and grafted into a recipient of the same species. Allograft tissue is typically derived from cadaveric donors (i.e., from deceased donors).
One type of allograft tissue is generally referred to as structural allograft tissue, which typically consist of blocks of bone or other types of tissue that can fastened to one or more surfaces of the bone defect. These blocks can also act as bulk supports to orthopedic prostheses or other types of graft tissue. These blocks can be shaped into any number of appropriate shapes and configurations in order to suit the particular clinical needs of the patient.
In order to preserve the useful shelf life of allograft tissue, as well as to inhibit bacterial growth within the allograft tissue, it is becoming common practice to dehydrate the allograft tissue, especially by freeze-drying. Freeze-drying quickly removes virtually all of the moisture within the allograft tissue, thus inhibiting any subsequent bacterial growth. However, prior to employing the allograft tissue in a surgical setting, it is generally necessary to re-hydrate the freeze-dried allograft tissue with some sort of fluid, such as sterilized water, saline, or the like.
Typically, the freeze-dried allograft tissue is removed from its protective packaging and either introduced into a liquid source or the liquid source is introduced onto the freeze-dried allograft tissue. This is a cumbersome and sometimes sloppy process that unnecessarily exposes the freeze-dried allograft tissue to atmospheric pathogens during the rehydration process. Additionally, this haphazard process does not ensure that the liquid material will thoroughly infuse into the pores of the allograft tissue.
Additionally, xenograft materials (e.g., non-human or animal-based graft materials) as well as synthetic materials (e.g., ceramic graft materials such as calcium-based materials, calcium-phosphate-based materials, calcium-sulfate-based materials, calcium-sodium-phosphate-based materials, as well as many others) have been used as orthopedic graft materials as well. However, these materials, must also be either rehydrated, in the case of dehydrated xenografts, or hydrated in the case of dry porous synthetic materials. Therefore, the same general problems described above are also encountered with these materials as well.
Therefore, there still exists a need for an apparatus and method for either hydrating dry porous orthopedic graft materials or rehydrating dehydrated orthopedic graft materials such that the respective orthopedic graft materials can be either hydrated and/or rehydrated in a sterile, efficient, and cost-effective manner.
SUMMARY OF THE INVENTION
In accordance with one embodiment of the present invention, a container for storing orthopedic graft materials is provided, comprising: (1) a dividing device for dividing the container into first and second compartments and for isolating the compartments from one another, the first compartment capable of receiving a liquid component and the second compartment containing an orthopedic graft material under vacuum; and (2) a vacuum reservoir device in communication with the second compartment, the vacuum reservoir device being capable of taking up substantially all residual interstitial gases and thereby ensuring thorough infusion of the liquid component into the orthopedic graft material component upon release of the dividing device so as to form a hydrated orthopedic graft material.
In accordance with a second embodiment of the present invention, a container for storing orthopedic materials is provided, comprising: (1) a dividing device for dividing the container into first and second compartments and for isolating the compartments from one another, the first compartment containing a liquid component and the second compartment containing an orthopedic graft material under vacuum; and (2) a vacuum reservoir device in communication with the second compartment, the vacuum reservoir device being capable of taking up substantially all residual interstitial gases and thereby ensuring thorough infusion of the liquid component into the orthopedic graft material component upon release of the dividing device so as to form a hydrated orthopedic graft material.
In accordance with a third embodiment of the present invention, a container for storing orthopedic graft materials is provided, comprising: (1) a dividing device for dividing the container into first and second compartments and for isolating the compartments from one another, the first compartment containing a liquid component and the second compartment containing an orthopedic graft material under vacuum; (2) an elongated pocket portion extending from and in communication with the second compartment; (3) a gas permeable membrane disposed between the second compartment and the pocket portion; and (4) a vacuum reservoir device disposed within the pocket portion and being in communication with the second compartment, the vacuum reservoir device being capable of taking up substantially all residual interstitial gases and thereby ensuring thorough infusion of the liquid component into the orthopedic graft material component upon release of the dividing device so as to form a rehydrated orthopedic graft material.
In accordance with a fourth embodiment of the present invention, a method for hydrating an orthopedic graft material is provided, comprising: (1) providing a container, including: (a) a dividing device for dividing the container into first and second compartments and for isolating the compartments from one another, the first compartment capable of receiving a liquid component and the second compartment containing an orthopedic graft material under vacuum; and (b) a vacuum reservoir device in communication with the second compartment, the vacuum reservoir device being capable of taking up substantially all residual interstitial gases and thereby ensuring thorough infusion of the liquid component into the orthopedic graft material component upon release of the dividing device so as to form a hydrated orthopedic graft material; and (2) releasing the dividing device, whereupon the liquid component rapidly migrates into the second compartment and thoroughly infuses into the orthopedic graft material component so as to form a hydrated orthopedic graft material.
In accordance with a fifth embodiment of the present invention, a method for hydrating an orthopedic graft material is provided, comprising: (1) providing a container, including: (a) a dividing device for dividing the container into first and second compartments and for isolating the compartments from one another, the first compartment containing a liquid component and the second compartment containing the orthopedic graft material under vacuum; and (b) a vacuum reservoir device in communication with the second compartment, the vacuum reservoir device being capable of taking up substantially all residual interstitial gases; and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for hydrating and rehydrating orthopedic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for hydrating and rehydrating orthopedic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for hydrating and rehydrating orthopedic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3125666

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.