Device and method for denoxing exhaust gas from an internal...

Power plants – Internal combustion engine with treatment or handling of... – By means producing a chemical reaction of a component of the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S295000, C060S301000, C060S303000

Reexamination Certificate

active

06637196

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a device and a method for deNOxing exhaust gas from an internal combustion engine.
The reduction of the nitrogen oxide emissions from an internal combustion engine that operates with excess air, in particular, a diesel internal combustion engine, can be effected with the aid of selective catalytic reduction (SCR), to form atmospheric nitrogen (N
2
) and water vapor (H
2
O). The reducing agents used are either gaseous ammonia (NH
3
), ammonia in aqueous solution, or urea in aqueous solution. The urea serves as an ammonia carrier and is injected into the exhaust system with the aid of a metering system upstream of a hydrolysis catalytic converter, where it is converted into ammonia by hydrolysis, and the ammonia then reduces the nitrogen oxides in the actual SCR or deNOx catalytic converter.
The important components of such a metering system are a reducing-agent vessel, a pump, a pressure sensor, and a metering valve. The pump conveys the reducing agent stored in the reducing-agent vessel to the metering valve, by which the reducing agent is injected into the exhaust-gas stream upstream of the hydrolysis catalytic converter. The metering valve is actuated through signals from a control device such that a defined, currently required amount of reducing agent is supplied as a function of operating parameters of the internal combustion engine (German Patent DE 197 43 337 C1, corresponding to U.S. Pat. No. 6,082,102 to Wissler et al.).
An advantage of the ammonia-releasing substances that are present in aqueous solutions, such as, for example, urea, is that the storage, handling, delivery, and metering are, in technical terms, relatively simple to implement. A drawback of these aqueous solutions is that, in the event of heating above a defined temperature limit, which in turn is dependent, inter alia, on the concentration of the-dissolved substance, thermal decomposition of the solution starts to occur in the reducing-agent tank.
At high temperatures, for example, when the vehicle equipped with an exhaust-gas aftertreatment installation of this type is parked at locations with high insolation, or even while the vehicle is operating in hot regions, the reducing agent, which can be at least partially converted into ammonia, may be overheated. The decomposition vapor pressure, which increases as the temperature rises, for, for example, an aqueous urea solution, leads to the formation of ammonia and, therefore, to an increase in pressure in the reservoir.
In order, on one hand, to prevent the reservoir from being destroyed by an unacceptably high pressure and, on the other hand, to prevent slippage of ammonia, in particular, when the filler neck of the reservoir is opened, European Patent Application EP 0 577 853 B1 discloses, in an exhaust-gas aftertreatment installation for an internal combustion engine of the type described in the introduction, connecting a pressure-relief line, which feeds excess reducing agent to the deNOx catalytic converter, to the reservoir for the reducing agent. The pressure-relief line is connected to the inlet of the deNOx catalytic converter, i.e., to the side that faces the internal combustion engine. A pressure-control valve is incorporated in the pressure-relief line. As a result, the amount of excess ammonia that is to be received by the deNOx catalytic converter can be limited within the scope of the compressive strength of the reservoir.
In the prior art pressure relief method, although it is possible to avoid an unacceptably high build-up of pressure in the reservoir, the amount of reducing agent that is fed to the catalytic converter through the pressure-relief line can only be taken into account to an insufficient extent during the metering strategy.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a device and method for deNOxing exhaust gas from an internal combustion engine that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices and methods of this general type and that reliably prevents an unacceptably is high pressure in a reducing-agent reservoir of an exhaust-gas aftertreatment device of the type described in the introduction without impairing the metering accuracy.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a device for deNOxing exhaust gas from an internal combustion engine having an exhaust pipe conveying exhaust gas in an exhaust direction includes a reduction catalytic converter operating under an SCR principle, the converter, disposed in the exhaust pipe, a reducing-agent reservoir for holding a reducing agent, a metering device for introducing the reducing agent into exhaust gas flowing to the converter, a reducing-agent pump for delivering the reducing agent from the reservoir to the metering device, the pump fluidically connecting the reservoir to the metering device, the metering device fluidically connecting the pump to the exhaust pipe upstream of the converter with respect to the exhaust direction, a pressure-relief line for feeding excess reducing agent from the reservoir to the converter, the pressure-relief line fluidically connecting the reservoir to the converter, and a flow-measuring device for recording an amount of excess reducing agent passing through the pressure-relief line, the flow-measuring device disposed in the pressure-relief line.
As a result of the amount of gaseous reducing agent that escapes while the internal combustion engine is at a stand still, due to temperature influences being taken into account during the determination of the amount of reducing-agent solution that is to be metered when the internal combustion engine is operating, not only is the operational reliability increased, even in the range of critical ambient conditions, for example, in summertime operation, but also a high metering accuracy is achieved.
The targeted utilization of the gaseous reducing agent that is released by the heating, i.e., ammonia, when an aqueous urea solution is used as reducing agent, prevents slippage of reducing agent because, when a predetermined pressure level is reached in the reducing-agent reservoir, the gaseous reducing agent is passed into the reduction catalytic converter through a pressure-relief line. The amount of gaseous reducing agent that flows in is advantageously recorded by a flowmeter in the pressure-relief line and is taken into account during the calculation of the amount of reducing agent. For example, when the internal combustion engine is operating, liquid reducing agent is only injected again in a controlled manner into the exhaust pipe of the internal combustion engine when the gaseous reducing agent in the reduction catalytic converter has been consumed.
When the vehicle is parked, the values for pressure and opening time of a valve device disposed in the pressure-relief line can be stored by an intelligent sensor configuration and, after the internal combustion engine has been started these values are interrogated by a control unit that controls the metering of the reducing agent, are transmitted and the stored current reduction catalytic converter level can be corrected accordingly.
In accordance with another feature of the invention, the pressure-relief line has a cross-sectional opening for conveying the excess reducing agent, a pressure-control valve is disposed in the pressure-relief line, and the valve opens the cross-sectional opening when a predetermined pressure exists in the reservoir to permit the excess reducing agent to pass through the pressure-relief line.
In accordance with a further feature of the invention, the pressure-relief line has a cross-sectional opening for conveying the excess reducing agent, an electrically controllable valve) is disposed in the pressure-relief line, and the valve opens the cross-sectional opening when a predetermined pressure exists in the reservoir to permit the excess reducing agent to pass through the pressure-relief line.
In accordance with an add

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for denoxing exhaust gas from an internal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for denoxing exhaust gas from an internal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for denoxing exhaust gas from an internal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120122

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.