Device and method for cursor motion control calibration and...

Computer graphics processing and selective visual display system – Display peripheral interface input device – Cursor mark position control device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S158000

Reexamination Certificate

active

06791531

ABSTRACT:

FIELD OF THE INVENTION
Control of motion of an on-screen cursor, calibration of the motion control, and object selection using an on-screen cursor, in particular, passive remote control of on-screen cursor motion, including absolute position cursor calibration and on-screen object selection.
BACKGROUND OF THE INVENTION
Input devices for cursor motion control and object selection on a computer screen are well known in the art. U.S. Pat. No. 4,886,941, entitled CIRCUIT FOR INTERFACING MOUSE INPUT DEVICE TO COMPUTER SYSTEM, issued to Davis et al on Dec. 12, 1989, the complete disclosure of which is incorporated herein by reference, for example, discloses a method for changing information from a motion sensor into quadrature signals for interfacing a mouse input device to a computer system via a channel designed to accept potentiometer-derived inputs. The inputs are typically transmitted via a hardwired electrical connection or a radio link, as disclosed in U.S. Pat. No. 5,854,621, entitled WIRELESS MOUSE, issued to Junod, et al on Dec. 29, 1998, the complete disclosure of which is incorporated herein by reference. The inputs control X-Y position signals for locating a cursor on the computer's display screen, for example, to interface with “mouse-icon” user graphics, whereby the user moves the cursor to on-screen locations associated with user programs and commands. The “mouse” is a form of hand-manipulated motion sensor very commonly used for cursor control. Other hand-manipulated motion sensors generally well known in the art include the “track ball” mouse and the “joy stick,” examples of which are found on many laptop computers. Also well known is the requirement of hand manipulation of the mouse, track ball and joy stick to generate the motion signals that control the cursor location.
Each of these hand-manipulated motion sensors require that the user's hand disengage from the keyboard, find the mouse, track ball or joystick, move the cursor, select the object, then reengage the keyboard. This sequence requires time and effort, especially in applications where both the keyboard and pointing are used extensively. The standard mouse also requires a significant amount flat, horizontal space to operate, and the moving parts are sensitive to dust and dirt, which interferes with precise control of the cursor.
One alternative hand-manipulated motion sensor is the “touchpad,” also found on many laptop computers. As disclosed by U.S. Pat. No. 5,327,161, entitled SYSTEM AND METHOD FOR EMULATING A MOUSE INPUT, DEVICE WITH A TOUCHPAD INPUT DEVICE, issued to Logan, et al on Jul. 5, 1994, the complete disclosure of which is incorporated herein by reference, the touchpad is a mouse-emulating input device having a drag switch in which the direction of movement of touch across the touchpad surface causes a display cursor to move in the same relative direction as the movement of touch across the surface. While the touchpad overcomes some of the limitations of the standard mouse, the touchpad, like the small joysticks found on laptop computers, do not provide the precise cursor control or ease of movement normally desired by users. Furthermore, each of these cursor control methods is counter-intuitive: the body motion used to direct the device, and through it the cursor, is one not normally used to “point” at an object. Rather, the user must move in a horizontal plane of motion that is rotated 90 degrees to the typical vertical plane of the display screen. This plane rotation requires a learning curve for the user. The typical user, for example, is not able to write words in a drawing program with a hand-manipulated device as well as by using a pen or pencil on paper.
Another problem with conventional hand-manipulated motion sensors is the manner of cursor positioning relative to the computer screen. According to this relative cursor positioning, physical motion of the mouse, or movement of touch across the touchpad surface, causes a responsive software application to move the cursor on the display screen in a direction consistent with the mouse or touch motion. When the mouse runs off of its friction pad or into an obstacle on the work surface or to the extent of the operator's reach, the relative position of the mouse to the cursor must be reset, or “re-centered,” by lifting and repositioning the mouse on the friction pad. In a touchpad, when the operator's digit moving across the touchpad reaches the limit of the touchpad's surface, the relative position of the operator's digit to the cursor must be similarly re-centered by lifting and repositioning the digit on the touchpad. In a mouse, this re-centering operation requires additional operator manipulation, while in a touchpad, re-centering increases the difficulty of the operator's task in controlling the cursor.
Alternatively to conventional hand-manipulated motion sensors, optical cursor control systems are known that simplify manipulation of the cursor. In particular, eye-tracking devices, or “oculometers,” are known that provide cursor manipulation by tracking eye movement. U.S. Pat. No. 4,109,145, entitled APPARATUS BEING CONTROLLED BY MOVEMENT OF THE EYE, issued to Graf on Aug. 22, 1978; U.S. Pat. No. 3,986,030, entitled EYE-MOTION OPERABLE KEYBOARD-ACCESSORY, issued to Teltscher on Oct. 12, 1976; and U.S. Pat. No. 5,325,133, entitled DEVICE FOR MEASURING A RETINA REFLECTED LIGHT AMOUNT AND A GAZE DETECTING apparatus using the same, issued to Adachi on Jun. 28, 1994, the complete disclosures of which are incorporated herein by reference, each disclose oculometers using light reflected from the user's eye to produce signals representative of viewing direction. The eye tracker trains a camera on an eye to measure its movement, thereby detecting the direction an eye is gazing. Each of the above referenced and other known oculometers are limited by the amount of reflected light from the user's eye.
As described in U.S. Pat. No. 4,891,630, entitled COMPUTER VISION SYSTEM WITH IMPROVED OBJECT ORIENTATION TECHNIQUE, issued to Friedman, et al on Jan. 2, 1990, the complete disclosure of which is incorporated herein by reference, two major drawbacks to the oculometer or eye tracking systems of the prior art are the field of view sensitivity and depth of field sensitivity. Field of view sensitivity requires the user to maintain a relatively constant position relative to the system's optical axis, i.e., in line with the sensors, so that the user's eye can be viewed. Depth of field sensitivity requires the user to maintain a constant position along the optical axis, i.e., a constant distance from the sensors, to remain in focus. Typically, the eye tracker uses the position of the corneal reflection relative to the center of the pupil to determine eye gaze location. However, because the pupil is very dark, lenses with a low “f” number have been used resulting in an eye tracker system with a small depth of field. Therefore, the user must keep the eye constantly in an unchanging position for the eye to remain in focus so that the eye tracking equipment can function effectively. Maximizing the depth of the field of view allows the user to move to various positions along the optical axis. One technique for improving the depth of the field is to use an automatic focusing lens, for example, a lens that will mechanically move in order to focus the image of objects at various depths along the optical axis. Alternatively, a fixed focus lens system is used to focus on an image of the user's eye at only one depth. The depth of field inherent in the fixed focus system is maximized by increasing the brightness of the light reflected off the user's eye.
U.S. Pat. No. 4,891,630 discloses a body pointing system that is combined with the eye tracker. Accordingly, U.S. Pat. No. 4,891,630 discloses a non-reflective, planar “orientation and position patch” having at least three coplanar and non-collinear reflective spots A, B, and C, and a curved reflector D. The motion control device also includes a sol

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for cursor motion control calibration and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for cursor motion control calibration and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for cursor motion control calibration and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3264745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.