Device and method for cryogenic freezing

Refrigeration – Processes – Treating an article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S374000

Reexamination Certificate

active

06725674

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a device for cooling material in a housing, which has a feeder for cryogenic coolant, which is connected to a source for a cryogenic coolant, as well as means to move the material to be cooled through the device, as well as a method for cooling material in a housing in which the cryogenic coolant is supplied, whereby the material is moved through the housing.
BACKGROUND OF THE INVENTION
For the cryogenic cooling, which includes cryogenic freezing as well as cryogenic chilling, freezing equipment such as spiral freezers, tunnel freezers or freezing cabinets are usually used. The materials to be cooled, for example, foodstuffs, are moved in these devices largely with the help of belts. These expanded freezing cabinets are partly constructed as very large units.
The task of this invention is to provide a device and a method for cryogenic cooling of material that is distinguished by a small floor space requirement for the cabinet in relationship to the material capacity obtainable per unit of time and to provide an efficient utilization of energy.
SUMMARY OF THE INVENTION
This task is solved according to the invention by way of a device that is provided with at least two towers with material carriers, one of which makes possible an upward movement of the material carrier as well as another which makes downward movement of the material carrier possible, whereby at both ends of the tower, means for transporting the material carrier toward one of the towers and/or away from one of the towers is provided, as well as means for lifting and lowering the towers and means for locking the towers into position.
The means for transporting the material carrier is preferably configured in such a way that a transport of the material carrier from a loading station for the material to one of the towers, as well as from one of the towers to another tower and from the other tower to the unloading station for the cooled material can take place. It is particularly preferred that the towers show the material carriers stacked on top of each other. In a preferred embodiment of the invention, the means for transporting the material carriers from one tower to another tower at the upper end of the towers, as well as the means for transporting the material carriers from the loading station to one of the towers and from one of the towers to the unloading station for the material at the lower end of the towers are provided. Expediently, means is available at the loading station, such as a spring belt, as well as means at the unloading station, such as a pusher.
The feeder for cryogenic coolant is advantageously arranged close to a device for producing a gas flow. This device is preferably designed as a ventilator. This arrangement provides a device that causes the product to be cooled to be subjected to a forced convection. The cryogenic coolant cools the surrounding gas and can thus be described as a convection medium.
A further development of the present invention provides that several devices for supplying the cryogenic coolant and/or several devices for producing the gas flow are arranged close to each other as well as at various points in the device. The feeders for cryogenic coolant preferably have a metering device which helps to ensure that each of the various feeders have an adjustable amount of cryogenic coolant available. In this way, the desired values for cooling capacity and thus the desired temperatures in the device can be set; in particular, different temperatures in different areas of the device can be set. Partitions are expediently provided between the various temperature areas. It is particularly preferred that the feeder for cryogenic coolant have at least one nozzle.
The invention may further be designed so that the means for transporting material carriers as well as the means for locking the towers into position have a hydraulic moving device. Mechanical moving devices are also preferably used. A suitable mechanical moving device would be, for example, a chain drive or a crank-driving mechanism. Another possibility consists of designing a pneumatic moving device. The moving device is advantageously designed so that it is electrically operated.
It proves to be an advantage to design the material carrier so that it is open on the sides on which devices for supplying cryogenic coolant are arranged. Likewise, it is advantageous to provide a stack reinforcer for the stacking of the material carrier. The stack reinforcer is advantageously designed so that it is open on the sides on which the devices for supplying cryogenic coolant are arranged. It is especially preferred that the material carriers are designed as metal sheets, particularly as metal sheets that are suitable for picking up food. The metal sheets are designed in such a way that they are horizontally navigable for a transport car, particularly for a transport car designed as a sliding carriage.
It is advisable to provide mechanical means for lifting and lowering the towers, such as a linear drive or a crank-driving mechanism. Hydraulic means proves to be advantageous for moving the towers. Another possibility is a configuration with pneumatic means. Of course, the invention can be further developed via electric driving means.
Preferably, means for loading the material to be cooled is provided. It is advisable to provide means for the unloading of the material. Advantageously, means for loading as well as means for unloading at the same height are provided. The invention is further developed by material-compatible conveying systems for loading and unloading the material. For example, a spring belt is provided for loading the material, as well as a pusher for removing the material from the material carriers. Another advantageous further development of the invention consists of designing the means for transporting the material carriers in such a way that the material carriers can be tipped. Thus the material can slide down from a slanted material carrier and be unloaded in this way. The tipping movement is preferably driven electrically, hydraulically, pneumatically or mechanically.
A further development of the device provides means for transporting the unloaded material back to the loading station of the device. As a result, the device has only one side that can be used and thus has a reduced floor space requirement. Particular advantageous for transporting material and material carriers is the sliding carriage, which transport material from the loading end to the unloading end of a tower and, once it has passed through at least two towers, picks up the material at the unloading end of the corresponding tower and transports it to the unloading side or back to the loading side, as desired.
Preferably, means for controlling and/or monitoring and/or regulating the cooling of the material is provided in the device. For example, a central SPS control device is designated for this purpose. The means is advantageously designed so that a fully automatic, quasi-continuous operation is possible.
Particularly for a permanent operation, the device preferably has a housing, which is designed as a thermally insulated cell.
The task at hand is solved with a method that the material on the material carriers is moved through the housing with automatic stacking, whereby at least two towers are constructed, whereby at least one tower is lifted and at least another tower is lowered, respectively, and whereby the towers are at least intermittently locked into position, as soon as the material carriers at the end of the tower are transported toward one of the towers and/or away from one of the towers. The material is moved similar to the movement of a conveyor device based on the principle of a paternoster lift.
In a preferred embodiment of the invention, the material carriers at the upper end of the towers are moved from one tower to another tower, as well as transported at the lower end of the towers from the loading station to one of the towers and from the other tower to the unloading station for the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for cryogenic freezing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for cryogenic freezing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for cryogenic freezing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249421

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.