Device and method for controlling fermentation and...

Stock material or miscellaneous articles – Two dimensionally sectional layer – Next to unitary web or sheet of equal or greater extent

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S031000, C099S468000, C099S472000

Reexamination Certificate

active

06387464

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device and method for controlling the fermentation and ensilagation of food capable of being so processed, and more particularly to a device and method for controlling fermentation and ensilagation for use with a container for fermenting and ensilaging. The device can control the fermented state of the food by changing the fermenting time, and lower the fermenting temperature inside the fermentation and ensilaging container to an ensilaging temperature in order to ensilage the fermented materials after a predetermined fermenting time.
2. Description of Background Art
Generally, food which is fermented tends to be easily acidified at the room temperature, but the ensilage of fermented material is relatively difficult.
As used herein, the term “ensilage” refers to the preservation or storage of food in a moist state as a result of acidification caused by the anaerobic fermentation of carbohydrates present in the food being treated.
The taste of the fermented material is significantly influenced by the degree of its fermentation. In the other words, a relatively high temperature causes fermentation at a faster rate but the taste of the fermented material deteriorates, while a relatively low temperature increases the time necessary for accomplishing desired fermentation. Additionally, when the fermenting temperature is frequently changed, the taste of the resulting fermented material is usually poor.
In a known apparatus for fermenting and ensilaging food, the amount of anaerobic carbon dioxide generated per unit time is monitored by a detecting and measuring device during the constant temperature fermentation process of the food contained in the ensilaging container. This type of fermenting and ensilaging apparatus allows the material being fermented for ensilagation to reach a stage at which the maximum amount of the anaerobic carbon dioxide is generated. This stage is considered as the optimum fermented stage. At this stage, the temperature inside the ensilaging container of the fermenting and ensilaging apparatus drops to the ensilaging temperature, thereby restricting further fermentation of the fermented material and keeping the fermented material cold.
This type of fermenting and ensilaging apparatus is provided with the monitoring device shown in
FIG. 1
which is adapted for detecting and measuring the amount of anaerobic carbon dioxide generated per unit time.
The monitoring device has a very complex construction however, as illustrated in
FIG. 1
so that it occupies considerable space inside the fermenting and ensilaging apparatus. Also, the monitoring device has another disadvantage in that a considerable amount of the generated carbon dioxide gas is exhausted out of the ensilaging container. This results in the dehydration and discoloration of the surface of the fermented material which further results in the lowering of the degree of freshness of the fermented material which in turn decreases the commercial value of the fermented material.
This type of device has still another disadvantage in that it initiates the cold ensilaging mode for the fermented material after reaching a particular fermentation state of the food, the so called optimum fermentation stage as determined by carbon dioxide output. That is, the device does not allow for any variation in the degree of fermentation of the food. Thus, the device can only provide for a single degree or stage of ripeness in the fermented material. That is the device cannot provide for a lesser degree of ripeness for those who prefer unripe material to ripe material.
U.S. Pat. No. 4,293,655 entitled
Apparatus For Ensilaging And Fermenting
is disclosed. This apparatus removes resulting anaerobic liquid from the bottom of the ensilaging container and recycles or distributes it onto top of the material being ensilaged in order to supply nutritive substance, anaerobes and moisture to the top of the material being ensilaged.
Thus, this type of apparatus prevents uneven fermentation and the deterioration of the freshness of the food being processed which is probably caused by the dehydration of the top of the material being ensilaged.
This type of fermenting and ensilaging apparatus however, has a disadvantage in that it fails to provide a device and method for controlling the fermented state of the material being ensilaged.
SUMMARY OF THE INVENTION
It is thus an object of the present invention to provide an improved device and method for controlling fermentation and ensilage for use with a container for fermenting and ensilaging food in which the above described disadvantages may be overcome and in which the ripeness stage for the material being ensilaged is controlled by varying the fermentation time at a predetermined temperature without the need of using a monitoring device for detecting and measuring the amount of anaerobic carbon dioxide generated during the process.
It is another object of the present invention to provide a device and method for controlling fermentation and ensilage for use with a container for fermenting and ensilaging in which the rate of fermentation and the stage of ripeness of the food may be freely selected by the user, respectively.
It is still another object of the present invention to provide a device and method for controlling fermentation and ensilagation for use with a container for fermenting and ensilaging in which the fermentation mode for the material being ensilaged is automatically converted to the ensilaging mode as the fermented state of said material being ensilaged is determined as a predetermined fermented state.
The above-mentioned objects of the present invention can be achieved by providing a device for controlling fermentation and ensilage for use in a container for fermenting and ensilaging.
The device according to the present invention comprises a key input unit adapted to be manually controlled by the user so as to set the rate of fermentation and the stage of ripeness desired, i.e., the degree of ripeness. A microprocessor controls the respective units in accordance with a preset program and in response to signals representing the present rate of fermentation and stage of ripeness provided by the key input unit. A load control unit controls a heating unit and a cooling unit in response to a control signal applied thereto representing the present rate of fermentation and stage of ripeness from the microprocessor. A temperature detecting unit detects the present temperature inside the ensilaging container and outputs a signal representing the temperature detected. A displaying unit displays the respective present operational states of the units in response to a signal applied thereto from the microprocessor, thereby providing the desired fermented state of the food by determining the rate of fermentation and the stage of ripeness.
In a further aspect of the present invention, the above-mentioned objects of the present invention can be achieved by a method for controlling the fermentation and ensilage in a container apparatus for fermenting and ensilaging. The method comprises the steps of first determining whether the present mode in the fermentation and ensilaging container is the fermentation mode. If the answer is “yes”, i.e., if the contents of the container are in the fermentation mode, then it is determined whether the present rate of fermentation has been set as the “quick rate”. If the “quick rate” fermentation rate has been set, the heating unit is powered in order to maintain the temperature inside the ensilaging container at 30° C. But, if the “quick rate” of fermentation has not been set, the temperature inside the ensilaging container is maintained at 25° C. If the answer is “no”, i.e., the contents of the container are not in the fermentation mode, then the ensilaging mode is executed.
The ripeness stage is determined simultaneously with maintaining the fermenting temperature which is determined in the present mode determining step as the temperature inside the ensilagin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for controlling fermentation and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for controlling fermentation and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for controlling fermentation and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2901424

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.