Device and method for characterizing and identifying an object

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S462040, C235S462070

Reexamination Certificate

active

06527181

ABSTRACT:

This application claims Paris Convention priority of DE 199 10 226.0 filed Mar. 9, 1999, the complete disclosure of which is hereby incorporated by reference.
BACKGROUND OF THE INVENTION
The invention concerns a device and a method for characterizing and identifying an object, e.g. a container, with a surface visible from outside the object, onto which is disposed an optically readable one-dimensional bar code consisting of bars and spaces.
A device of this type and a corresponding method are known from the internet article “BARCODE” by the company Stemmer Imaging GmbH, D-82178 Puchheim, http://www.cvc-imaging.com, last update 9. July 1998.
Bar codes belong to the group of optical codes and are widely used today. The arrangement of bars and spaces of varying widths can be found mainly on packings of all kinds. Thereon, the disposed bar code contains information e.g. about the producer, the product, use-by date, price, etc. But also in the industrial field, the use of bar codes offers advantages since the marking of products with bar codes can automate and/or accelerate production processes.
A patent application for the principle of bar code technology and the first bar code was filed in the U.S.A. in 1949. Due to the small number of electronic components available and corresponding high prices, application thereof was almost exclusively limited to the military. Only the introduction of microprocessors in 1970 allowed production of low-cost reading and processing devices which permitted longer operational times as compared with vacuum tube computers used up to then. The development of bar code technology experienced a real boost in 1982 when all objects used in connection with the army in the U.S.A. had to be provided with a bar code label for identification.
Due to the increasing variety of models, car manufacturers have also started to mark the different components for assembly and coordinated material supply.
A new advantage, in addition to fast and faultless data acquisition irrespective of the “weak point human labor”, is more and more the reduced price of corresponding bar code printing programs and also bar code reading devices.
Some terms are frequently used in connection with bar codes which will be briefly explained in the following. This list was taken roughly from the book “Barcode—Einführung und Anwendungen” (Bar code—introduction and use) by Mathias Pötter and Ralf Jesse, Verlag Heinz Heise GmbH & Co. KG, Hannover, 1st edition 1993 and contains only the terminology required for understanding the present work.
A line or bar is the dark element of a bar code. Its binary value is one.
A space is a bright element of a code. Its value is zero.
The bars and spaces are arranged in parallel according to a defined pattern which, in total, contains machine-readable information.
Element
This term describes a bar as well as a space.
A module is the narrowest element of a code. Wide bars and spaces are calculated as a multiple of a module.
Module Width X
This value states the width of the narrowest element of a bar code, of the module, in millimeters.
Quiet Zone
The area between two bar codes has to be bright to indicate the start or end of the code to the reading device. This area is called the quiet zone.
Start and Stop Characters
Start and stop characters define a bar code. At the same time they ensure that bar codes can be read forwards and backwards. The start and stop characters of the bar codes are usually designed such that when they are read from the left to the right their sequence differs from that read from the right to the left. Some bar codes use so-called marginal characters instead of the usual start and stop characters.
Check-sum Digit
Bar codes may be provided with one or more check-sum digits for improving detection of decoding errors. Some codes demand the use of check-sum digits.
Tolerance
To permit correct reading of bar codes, only small tolerances from the nominal width or height are allowed. The tolerances are selected such that the bar code elements of differing widths can always be clearly delimited from one another. With many bar codes, sufficient distinction is achieved when wide bar code elements are two to three times as wide as narrow elements.
Ratio
This term is met only in connection with codes having two widths. The Ratio V states the relationship of the width of a broad element to the width of a narrow element (module).
In the course of time, many different bar code types were generated which were adapted to special applications.
One-dimensional Bar Codes
This type of bar code is the most widely used at the moment. Its design consists of a sequence of vertical, wider or narrower lines. One-dimensional bar codes are classified again into codes of two widths and multiple widths.
Codes of Two Widths
Two-widths code means that the elements of the bar code can assume only two different widths. This includes the code
2
/
5
—family, the code Codabar and the code
39
. Multiple-widths codes are e.g. code
93
, code
128
and code EAN.
Bar codes are also widely used in science. A concrete new field of application can be found in the current production of the preparation robot NMRAutoPrep by the company Bruker Analytik GmbH which prepares samples for NMR spectroscopy and supplies same to an NMR spectrometer via a transport system.
The sample preparation is carried out automatically by the preparation robot by means of input analysis instructions. Correlation between the request and the sample is currently effected via a commercial bar code label disposed on the bottle.
The preparation robot NMRAutoPrep also offers the possibility of preparing samples for a BEST-NMR analysis (BEST-NMR=Bruker Efficiency Sample Transfer NMR). Thereby, the prepared sample is intermittently stored in 2 ml bottles of which up to 96 are located in a container, the so-called rack. This rack is then transmitted manually to a robot of the company Gilson which suctions the samples out of the bottles and supplies same to the probe head of the NMR magnet via a thin hose.
Up to now, the NMR analysis bottle could not be uniquely identified since mounting of a bar code label on the bottle is not possible due to the construction of the rack. The bar code label would be partly covered and for this reason the bottle would have to be lifted out of the rack and possibly turned. A one-dimensional bar code on the bottle lid would be larger than the diameter of the bottle (11 mm) and a two-dimensional bar code is also not possible due to the injection point (septum of rubber) in the center of the lid.
For this reason, the position of the bottle within the rack is stored and thereby provides correlation to the sample. It is, however, possible that bottles are mixed up during transport from the preparation robot NMRAutoPrep to the Gilson robot. For this reason, the current solution is not satisfactory.
In contrast thereto, it is the purpose of the present invention to present a device and a method for automatic detection, recognition and identification of objects, e.g. the above-mentioned bottles, which provide automatic identification of hollow, in particular hollow-cylindrical objects in as simple, technically undemanding and cheap manner as possible.
SUMMARY OF THE INVENTION
This object is achieved in accordance with the invention in that the bar code is disposed in an annular area of the bottle, that the bars and spaces extend in the shape of a star from a center of the annular area towards the outside and that the bar code is readable in the circumferential direction of the annular area.
A recess or a hole may thereby be provided inside of the annular area, e.g. the inlet opening of a bottle, and the structure outside of the annular area is unimportant for the inventive characterization. Since the bars and spaces of the bar code extend in a star-like manner radially outwardly, the bar code structured according to the invention can be read by optical scanning in the circumferential direction of the annular area, wherein the annular area does not have to be circular, but merely has

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for characterizing and identifying an object does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for characterizing and identifying an object, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for characterizing and identifying an object will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3064850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.