Device and method for balancing the weight on a robot arm

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S245000, C700S260000, C700S272000, C700S274000, C700S275000, C700S276000, C700S281000, C700S287000, C192S058620, C192S058800, C192S083000, C267S140130, C029S701000, C029S715000, C901S045000, C901S048000, C901S049000, C074S490010

Reexamination Certificate

active

06408225

ABSTRACT:

The invention relates to a device for compensating the weight of a robot arm of a robot, having a fluid spring particularly a gas spring, and with a control device for controlling the movements of the robot, as well as to a method for compensating the weight of the robot arm, in which the weight compensation of the robot arm is brought about by a fluid spring, particularly a gas spring and the movements of the robot are controlled.
For compensating static loads a robot is generally provided with a weight compensation device, which can e.g. be constructed as a movable counterweight to the robot arm. For adjusting such a device for weight compensation purposes, it is e.g. known to model the dynamic and static behaviour of the controlled system fixed by the robot mechanics and robot drive mathematically by means of the motion equations for the complete robot. In the motion equations obtained the equilibrium conditions can be set as a function of the position of the robot arm for each coordinate axis. If this equation system is resolved according to the drive moments, the detailed desired pattern of speed and drive moments for present robot are movements are obtained. The desired value obtained in this way can generally be used for precontrol purposes. Whereas in the ideal case, with exact mathematical modelling of the real movement conditions of the robot, no control deviation occurs, in practice a controller is unavoidable in order to compensate the errors of the model. For this purpose it is e.g. necessary to subject the controller, e.g. constructed as a PID controller, using a final control element to the actual movement conditions of the robot, so that the controller is able to readjust the differences. In this way the robot arm can be operated at any time with maximum possible speed or maximum possible acceleration, without exceeding the permitted limits.
For example gas springs are known, which are e.g. as fixed to a robot arm, that in the case of a deflection thereof they undergo compression or stretching and consequently convert the pressure dependent on robot are deflection into a force dependent on said deflection. However, a particular disadvantage when using such gas springs is the fact that the relationship between the deflection and force or tension of a gas spring is only proportional for as long as the behavior of the gas can be approached to the ideal gas equation. Since in particular at higher gas pressures, the gas no longer behaves in an ideal manner and heats on compression and cools on depression, the force produced by means of gas springs has a considerable fluctuation range, which on the one hand leads to a fluctuating load compensation as a result of pressure changes and on the other to an inadequate utilization of the drive resources, because the power limits of the robot must be oriented for safely reasons on the basis of the leaks favorable values. In addition, pressure drops caused by gas spring leas are not detected, which can lead to robot overloading and damage.
Whilst according the aforementioned disadvantages, the problem of the invention is to propose a device and a method for compensating the weight of a robot arm of a robot of the aforementioned type.
In the case of a device of the aforementioned type, the invention solves this problem by a pressure sensor measuring the pressure of the fluid of the fluid spring. For solving the problem, in a robot arm weight compensation method according to the preamble, the pressure of the fluid of the fluid spring is measured.
Through the measurement of the pressure of the gas enclosed in a gas spring it is possible to obtain a value representative of the instantaneous motion state of the robot. The high reliability and precision of such a pressure sensor means that the robot can be drive substantially up to its power limits and therefore works with the maximum efficiency. Another disadvantage is the detection of leaks in the fluid spring by a pressure drop.
In a preferred construction, the pressure sensor according to the invention is connected to one or more limit sensors for producing signals at attained preset pressure limits. Said limit sensor is in turn connected in preferred manner to a protective device for automatically disconnecting the robot drive on passing above and/or below a presettable pressure limit. This reliably avoids overload or damage to the robot, in that in the case of a very high pressure, e.g. is not permitted extreme positions of the robot arm or excessive temperature, or in the case of a very low pressure, e.g. with a leak in the gas spring, the robot drive is automatically disconnected.
In another preferred construction, the robot are weight compensating device has a monitoring device for monitoring the fluid spring pressure measured by the pressure sensor and which is preferably constructed for monitoring the time pressure distribution of the fluid spring so as to permit a predictive diagnosis. It is in particular provided that the monitoring device for monitoring the measured pressure and the time pressure distribution of the fluid spring is constructed as a function of robot arm positions. Such a monitoring device, which monitors the pressure conditions in each robot arm motion phase, permits an adaptation of the motion of movement data by means of readjustment and an optimum utilization of the drive resources. In addition, creeping changes to the pressure and abnormalities in the pressure distribution are detected and consequently e.g. information is obtained to the effect that a robot needs maintenance.
The fluid pressure is preferably monitored for reaching preset limits and the robot drive is disconnected on passing above and/or below a presettable pressure limit, to prevent robot overloading and damage.
According to another preferred construction, the measured pressure and in particular the time pressure distribution of the fluid spring is monitored and both the measured pressure and the time pressure distribution of the fluid spring are monitored as a function of robot arm positions.
In a robot control device its static and dynamic behaviour are mathematically simulated in an a equation system within the framework of a robot model. This makes it possible from moments at the drive (motor) to calculate the moment at the individual driven part with all the influences (gravitation, friction, inertia, centrifugal forces, support forces, etc.), to calculate from the axle position, speed and acceleration the drive moment (motor) necessary for the actual travel or movement situation (moment precontrol and from the axle position and the given, maximum available motor and gear moments to determine the maximum permitted acceleration of all the axles.
Amount is inter alia taken of the mass, centre of gravity, inertia of the robot mechanics components, mass, centre of gravity and inertia of the fitted load (tool, useful load), motor, gear, friction, gravitation, Coriolis, centrifugal and support moments, as well as axle position, speed and acceleration.
Using the aforementioned input values, the model calculates the actual necessary motor moments and supplies then in the sense of a moment precontrol to the drive regulation. This method relieves the drive regulation and consequently improves the static and dynamic precision of the robot. In the ideal case the calculated moments would correspond to the real moments and the drive regulators would become unemployed. In practice the drive regulators only have to compensate the false amounts, which are due to the incompleteness of the model or the imprecision of the preset values.
Apart from the moment precontrol, the model also supplies information to the path planning/travel profile generation module, which ensures that the acceleration and deceleration ramps are always set in such a way that the most loaded axle travels with the permitted maximum speed values. This permit maximum travel dynamics whilst simultaneously respecting the limits.
Hitherto the support force of the weight compensation has been taken into account in principle, i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Device and method for balancing the weight on a robot arm does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Device and method for balancing the weight on a robot arm, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Device and method for balancing the weight on a robot arm will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2911786

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.