Development of a gel-free molecular sieve based on...

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S600000, C210S500220

Reexamination Certificate

active

06685810

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to a self-assembled nano-array molecular sieve for the separation of molecules.
BACKGROUND OF THE INVENTION
This invention relates in general to self-assembled nanometer-scale arrays used as molecular sieves in the separation of molecules by differential transport through the array, and in particular to self-assembled carbon nanotube arrays used as electrophoretic sieves for DNA sequencing and separation of biological molecules comprising a self-assembled carbon nanotube array arranged on a substrate and an electromagnetic field generator for applying a potential across the array sieve producing a characteristic mobility in the molecules.
Electrophoresis is the predominant technique for separating DNA fragments obtained from restriction maps of complete genomes (millions of base pairs long) and for large-scale sequencing projects, like the Human Genome Initiative. Electrophoresis has also become an essential tool for clinical chemistry applications. In conventional electrophoretic sieves, electrophoretic separation occurs by differential transport of polyelectrolytes, such as, DNA molecules and proteins, through a medium or device in the presence of an electric field. The medium acts as a sieve, producing a size-dependent mobility in the molecules. In slab gel electrophoresis, the sieving medium is provided by a slab gel of agarose or polyacrylamide polymers, which contain nanometer-size pores. For example, an agarose gel is made by placing agarose into solution with a suitable solvent and the pore size depends on the concentration of agarose in solution according to the equation:
&agr;≈89·
A
−2/3
nm
  (1)
where a is the pore size and A is the concentration of the agarose in (g/mL). Pore size for an agarose gel with A~0.1 to 1.0 g/mL is in the range of 100 to 500 nm.
Polyacrylamide polymers are produced through a polymerization reaction of acrylamide and methylenebisacrylamide. By controlling the conditions of the reaction, such as acrylamide concentration and the degree of cross-linking, the pore structures thus formed can be reproducibly controlled and can have pore sizes as small as a few nanometers. Because of the small pore size, polyacrylamide gel electrophoresis (PAGE) is the method of choice for separating small DNA strands (<1000 bases) for DNA sequencing or genetic mutation studies, such as cancer detection or toxicology.
Despite the wide-range of pore sizes available, and the well-documented reproducibility of the conventional gel electrophoresis techniques, severe throughput limitations, size limitations and the need for cleaner, hardier and more user-friendly technologies have led a number of researchers to look for ways to improve the automation and rapidity of electrophoretic techniques. For example, sequencing speed is limited in gel electrophoresis because the electric fields used to push the molecules through the sieve must be kept low to avoid Joule heating of the gel, which could cause degradation of the gel material. In addition, gels are not very durable, requiring constant replacement which results in the further requirement for extra-plumbing and reservoirs to allow facile replacement of the gel adding to both the size and complexity of the gel-electrophoresis equipment.
One recent advance has been capillary electrophoresis (CE). In capillary electrophoresis, a small diameter capillary acts as the sieve for the molecules. CE has gained widespread popularity because the small-scale CE sieve structures allow for the facile dissipation of excess heat, which in turn allows for the use of higher electric fields resulting in a reduction in sequencing time. However, CE systems still contain gels and would thus not be appropriate for extended periods of use, because of the added complexity of storing replaceable gels and injecting them periodically in the micro-channel structure.
Hybridization techniques have offered some promise for rapid separation. However, technical issues in data collection, such as low signal-to-noise ratios and analysis, such as computationally intensive combinatorial analysis have prevented hybridization techniques from becoming the standard in DNA analysis.
More recently, researchers at Princeton have introduced micro-fabricated arrays as artificial sieving structures to replace polymer-based sieves. These artificially fabricated arrays have several advantages compared to both the polymer gels and the capillaries including: 1) the possibility of using ultra-high fields enabling higher speed separation and real-time monitoring of DNA samples; 2) the use of a non-viscous medium leading to higher durability and which in turn could possibly lead to the development of permanent sieves; 3) the flexibility and controllability of the configuration of the sieving structure would allow for analysis over a broad range of molecular sizes, from simple DNA fragments to full chromosomes, and the production of devices on a very large scale for parallel processing; 4) because these structures can also be fabricated with extremely regular sized and spaced sieve features, the separation resolution should be improved leading to further miniaturization of the electrophoresis device, including the possibility of an electrophoresis analyzer on a chip; and 5) because the sieves can be built from inert substances analysis can be made of a variety of biomolecules.
One example of a micro-fabricated array formed using ion-beam lithography was disclosed by Duke et al., in
Electrophoresis,
vol. 18, pages 17-22 (1997), incorporated herein by reference. Duke et al. produced a periodic array of pillars 100 nm in diameter and 100 nm apart and demonstrated the ability to differentiate the electrophoretic mobility of DNA molecules between 7.2 and 43 kilobases (kb). Other disclosures of lithographically produced arrays for the use in electrophoresis devices are described in U.S. Pat. Nos. 5,110,339 and 5,837,115, both of which are incorporated herein by reference.
While this method clearly shows promise for providing nano-scale array sieves for separating DNA molecules having several thousand base pairs, the lower limit for array features made using such lithographic techniques is about 100 nm, indicating that smaller DNA molecules cannot be separated. Moreover, due to the time-intensive nature of e-beam lithography, it is not suitable for the economical fabrication of large dense arrays of with pore sizes approximately below 50 nm. This in turn limits the application of such sieves to DNA separation but not sequencing, which requires the separation of DNA molecules as small as a few base pairs long. In order to provide separation of molecules of up to 600 bases, inter-post separations of approximately 15 to 30 nm will be needed. Moreover, despite the progress made in recent years in developing new techniques to produce smaller and smaller features via lithographic techniques such as ion beam or electron beam lithography, it is clear that increasingly costly efforts are being required to sustain the progress. While deep UV and X-ray lithography offer hope of incremental improvements in resolution, lithographic and patterning techniques for reproducibly producing features at the 10 to 30 nm level are essentially nonexistent at the present time. The resolution limit of currently available patterning technologies make it apparent that entirely new approaches will be needed to sustain the rapid progress that has characterized the last few decades of semiconductor technology development.
One novel approach to making nanometer-scale structures utilizes self-assembly of atoms and molecules to build up functional structures. In self-assembled processing, atom positions are determined by fundamental physical constraints such as bond lengths and angles, as well as atom-to-atom interactions with other atoms in the vicinity of the site being occupied. Essentially, self-assembly uses the principles of synthetic chemistry and biology to “grow” complex structures from a set of basic feedstocks. Utilizing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Development of a gel-free molecular sieve based on... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Development of a gel-free molecular sieve based on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Development of a gel-free molecular sieve based on... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3333025

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.